Double Resonance Raman Scattering in Single-Layer MoSe2 under Moderate Pressure

Funds: Supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB30000000, XDB28000000 and XDB07030100, the National Natural Science Foundation of China under Grant Nos 11774395, 11727902 and 91753136, and the Beijing Natural Science Foundation under Grant No 4181003.
  • Received Date: December 03, 2018
  • Published Date: March 31, 2019
  • Pressure-dependent properties in layered transition-dichalcogenides are important for our understanding of their basic structures and applications. We investigate the electronic structure in MoSe2 monolayer under external pressure up to 5.73 GPa by Raman spectroscopy and photoluminescence (PL) spectroscopy. The double resonance out-of-plane acoustic mode (2ZA) phonon is observed in Raman spectroscopy near 250 cm1, which presents pronounced intensity and pressure dependence. Significant variation in 2ZA peak intensity under different pressures reflects the change in electronic band structure as pressure varies, which is consistent with the blue shift in PL spectroscopy. The high sensitivity in both Raman and PL spectroscopy under moderate pressure in such a two-dimensional material may have many advantages for optoelectronic applications.
  • Article Text

  • [1]
    Splendiani A et al. 2010 Nano Lett. 10 1271 doi: 10.1021/nl903868w

    CrossRef Google Scholar

    [2]
    Mak K F et al. 2010 Phys. Rev. Lett. 105 136805 doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [3]
    Zhou Y et al. 2017 Nat. Nanotechnol. 12 856 doi: 10.1038/nnano.2017.106

    CrossRef Google Scholar

    [4]
    Xu X et al. 2014 Nat. Phys. 10 343 doi: 10.1038/nphys2942

    CrossRef Google Scholar

    [5]
    Plechinger G et al. 2016 Nat. Commun. 7 12715 doi: 10.1038/ncomms12715

    CrossRef Google Scholar

    [6]
    Cui X et al. 2015 Nat. Nanotechnol. 10 534 doi: 10.1038/nnano.2015.70

    CrossRef Google Scholar

    [7]
    Li X X et al. 2017 Nat. Commun. 8 970 doi: 10.1038/s41467-017-01128-9

    CrossRef Google Scholar

    [8]
    Claassen M et al. 2016 Nat. Commun. 7 13074 doi: 10.1038/ncomms13074

    CrossRef Google Scholar

    [9]
    Mak K F and Shan J 2016 Nat. Photon. 10 216 doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [10]
    Soubelet P et al. 2016 Phys. Rev. B 93 155407 doi: 10.1103/PhysRevB.93.155407

    CrossRef Google Scholar

    [11]
    Lee J U et al. 2017 Nat. Commun. 8 1370 doi: 10.1038/s41467-017-01487-3

    CrossRef Google Scholar

    [12]
    Wang Y et al. 2017 Nature 550 487 doi: 10.1038/nature24043

    CrossRef Google Scholar

    [13]
    Zhao Z et al. 2015 Nat. Commun. 6 7312 doi: 10.1038/ncomms8312

    CrossRef Google Scholar

    [14]
    Nayak A P et al. 2015 Nano Lett. 15 346 doi: 10.1021/nl5036397

    CrossRef Google Scholar

    [15]
    Chi Z H et al. 2014 Phys. Rev. Lett. 113 036802 doi: 10.1103/PhysRevLett.113.036802

    CrossRef Google Scholar

    [16]
    Hromadová L et al. 2013 Phys. Rev. B 87 144105 doi: 10.1103/PhysRevB.87.144105

    CrossRef Google Scholar

    [17]
    Nayak A P et al. 2014 Nat. Commun. 5 3731 doi: 10.1038/ncomms4731

    CrossRef Google Scholar

    [18]
    Kohulák O and Martoňák R 2017 Phys. Rev. B 95 054105 doi: 10.1103/PhysRevB.95.054105

    CrossRef Google Scholar

    [19]
    Rifliková M et al. 2014 Phys. Rev. B 90 035108 doi: 10.1103/PhysRevB.90.035108

    CrossRef Google Scholar

    [20]
    Dybala F et al. 2016 Sci. Rep. 6 26663 doi: 10.1038/srep26663

    CrossRef Google Scholar

    [21]
    Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 ACS Nano 4 2695 doi: 10.1021/nn1003937

    CrossRef Google Scholar

    [22]
    Zhang X et al. 2015 Chem. Soc. Rev. 44 2757 doi: 10.1039/C4CS00282B

    CrossRef Google Scholar

    [23]
    Puretzky A A et al. 2015 ACS Nano 9 6333 doi: 10.1021/acsnano.5b01884

    CrossRef Google Scholar

    [24]
    Cong C et al. 2011 ACS Nano 5 8760 doi: 10.1021/nn203472f

    CrossRef Google Scholar

    [25]
    Zhang X et al. 2016 Carbon 99 118 doi: 10.1016/j.carbon.2015.11.062

    CrossRef Google Scholar

    [26]
    Zhang X et al. 2016 Nanoscale 8 6435 doi: 10.1039/C5NR07205K

    CrossRef Google Scholar

    [27]
    Gao R and Li H 2012 High Press. Res. 32 176 doi: 10.1080/08957959.2012.673601

    CrossRef Google Scholar

    [28]
    Yang M et al. 2017 Appl. Phys. Lett. 110 093108 doi: 10.1063/1.4977877

    CrossRef Google Scholar

    [29]
    Roy A, Movva H C, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E and Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396 doi: 10.1021/acsami.6b00961

    CrossRef Google Scholar

    [30]
    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C and Loh K P 2017 J. Am. Chem. Soc. 139 1073 doi: 10.1021/jacs.6b12156

    CrossRef Google Scholar

    [31]
    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K and Ajayan P M 2014 ACS Nano 8 5125 doi: 10.1021/nn501175k

    CrossRef Google Scholar

    [32]
    Chang Y H, Zhang W, Yihan Zhu, Yu Han, Pu J, Chang J K, Hsu W T, Huang J K, Hsu C L, Chiu M H, Takenobu T, Li H, Wu C I, Chang W H, Wee A T S and Li L J 2014 ACS Nano 8 8582 doi: 10.1021/nn503287m

    CrossRef Google Scholar

    [33]
    Lu X, Utama M I, Lin J, Gong X, Zhang J, Zhao Y, Pantelides S T, Wang J, Dong Z, Liu Z, Zhou W and Xiong Q 2014 Nano Lett. 14 2419 doi: 10.1021/nl5000906

    CrossRef Google Scholar

    [34]
    Zhao Y, Lee H, Choi W, Fei W and Lee C J 2017 RSC Adv. 7 27969 doi: 10.1039/C7RA03642F

    CrossRef Google Scholar

    [35]
    Nam D, Lee J U and Cheong H 2015 Sci. Rep. 5 17113 doi: 10.1038/srep17113

    CrossRef Google Scholar

    [36]
    Bilgin I, Raeliarijaona A S, Lucking M C, Hodge S C, Mohite A D, de Luna Bugallo A, Terrones H and Kar S 2018 ACS Nano 12 740 doi: 10.1021/acsnano.7b07933

    CrossRef Google Scholar

    [37]
    Postorino P, Congeduti A, Degiorgi E, Itié J P and Munsch P 2002 Phys. Rev. B 65 224102 doi: 10.1103/PhysRevB.65.224102

    CrossRef Google Scholar

    [38]
    Caramazza S, Capitani F, Marini C, Mancini A, Malavasi L, Dore P and Postorino P 2017 J. Phys.: Conf. Ser. 950 042012 doi: 10.1088/1742-6596/950/4/042012

    CrossRef Google Scholar

    [39]
    Fu X, Li F, Lin J F, Gong Y, Huang X, Huang Y, Han B, Zhou Q and Cui T 2017 J. Phys. Chem. Lett. 8 3556 doi: 10.1021/acs.jpclett.7b01374

    CrossRef Google Scholar

    [40]
    Chang C H, Fan X, Lin S H and Kuo J L 2013 Phys. Rev. B 88 195420 doi: 10.1103/PhysRevB.88.195420

    CrossRef Google Scholar

    [41]
    Xiuming Dou, Kun Ding, Desheng Jiang and Sun B 2014 ACS Nano 8 7458 doi: 10.1021/nn502717d

    CrossRef Google Scholar

    [42]
    Xiao G, Cao Y, Qi G, Wang L, Liu C, Ma Z, Yang X, Sui Y, Zheng W and Zou B 2017 J. Am. Chem. Soc. 139 10087 doi: 10.1021/jacs.7b05260

    CrossRef Google Scholar

    [43]
    Venezuela P, Lazzeri M and Mauri F 2011 Phys. Rev. B 84 035433 doi: 10.1103/PhysRevB.84.035433

    CrossRef Google Scholar

    [44]
    Thomsen C and Reich S 2000 Phys. Rev. Lett. 85 5214 doi: 10.1103/PhysRevLett.85.5214

    CrossRef Google Scholar

    [45]
    Martin R M and Falicov L M 1983 Top. Appl. Phys. 8 79

    Google Scholar

  • Related Articles

    [1]CHEN Zheng, DENG Zhen-Bo, ZHOU Mao-Yang, LÜ Zhao-Yue, DU Hai-Liang, ZOU Ye, YIN Yue-Hong, LUN Jian-Chao. A Poly-(3-Hexylthiophene) (P3HT)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Bilayer Organic Solar Cell Fabricated by Airbrush Spray Deposition [J]. Chin. Phys. Lett., 2012, 29(7): 078801. doi: 10.1088/0256-307X/29/7/078801
    [2]Piotr Zawadzki. New View of Ping-Pong Protocol Security [J]. Chin. Phys. Lett., 2012, 29(1): 010301. doi: 10.1088/0256-307X/29/1/010301
    [3]M. Todica, C. V. Pop, Luciana Udrescu, Traian Stefan. Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System [J]. Chin. Phys. Lett., 2011, 28(12): 128201. doi: 10.1088/0256-307X/28/12/128201
    [4]LI Jian-Kang, SONG Xiang-Rong, YIN Ke. Discrete Capability of the Lempel-Ziv Complexity Algorithm on a Vibration Sequence [J]. Chin. Phys. Lett., 2010, 27(6): 060502. doi: 10.1088/0256-307X/27/6/060502
    [5]YANG Di-Wu, XING Da, ZHAO Xue-Hui, PAN Chang-Ning, FANG Jian-Shu. A Combined Reconstruction Algorithm for Limited-View Multi-Element Photoacoustic Imaging [J]. Chin. Phys. Lett., 2010, 27(5): 054301. doi: 10.1088/0256-307X/27/5/054301
    [6]SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics [J]. Chin. Phys. Lett., 2008, 25(4): 1343-1346.
    [7]SHEN Dan, WANG Wen-Xiu, JIANG Yu-Mei, HE Yue, HE Da-Ren. Response to Disturbance and Abundance of Final State: a Measure for Complexity? [J]. Chin. Phys. Lett., 2007, 24(7): 2146-2148.
    [8]ZHANG Shu-Yuan, PAN Deng-Yu, WU Zi-Qin. Insitu Plane-View and Cross-Section Transmission Electron Microscopy of Fractal Formation in Au/a-Ge Bilayer Films [J]. Chin. Phys. Lett., 2002, 19(6): 828-831.
    [9]XUE Peng, LI Chuan-Feng, GUO Guang-Can. A Two-Party Probabilistic Communication Complexity Scenariovia Werner States [J]. Chin. Phys. Lett., 2001, 18(10): 1305-1307.
    [10]ZHANG Geng-Min. Scanning Tunnelling Microscopy Observation on 10,12-Tricosadiynoic Acid Monolayers Deposited by Schaefer’s Method [J]. Chin. Phys. Lett., 2001, 18(1): 137-139.

Catalog

    Article views (80) PDF downloads (666) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return