High-Pressure Phase Transitions of Cubic Y_2O_3 under High Pressures by In-situ Synchrotron X-Ray Diffraction

  • High-pressure phase transitions of cubic Y_2O_3 are investigated using in situ synchrotron x-ray diffraction in a diamond anvil cell up to 36.3 GPa. The pressure-induced phase transitions of cubic Y_2O_3, which display apparent inconsistencies in previous studies, are verified to be from a cubic phase to a monoclinic phase and further to a hexagonal phase at 11.7 and 21.6 GPa, respectively. The hexagonal Y_2O_3 displays noticeable anisotropic compressibility due to its layered structure and it is stable up to the highest pressure in the present study. A third-order Birch–Murnaghan fit based on the observed pressure-volume data yields zero pressure bulk moduli of 180(3), 196(7) and 177(7) GPa for cubic, monoclinic and hexagonal phases, respectively.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return