Dynamic Superposition and Levitation Capability of Two Confronting Ultrasonic Waves

  • The superposition dynamics of two confronting ultrasonic waves and their levitation capability for centimeter-sized thin disks are investigated by numerical analyses and validated by experiments. The sound pressure simulation reveals that two opposite ultrasonic waves provide a more effective standing-wave field than a single ultrasonic wave when the diameter of disk-shaped object approaches the wavelength scale. The dynamic superposition of two confronting beams facilitates the acoustic levitation of the clay disk and aluminum disk with diameters of 0.97\lambda and 0.90\lambda . The acoustic radiation forces exerting on these thin disks are measured experimentally, which exhibit a better levitation stability for the centimeter-sized thin disks. The equilibrium levitation positions of the two disks are located near the sound pressure node, and the maximum acoustic radiation pressure on their surfaces is less than one percent of the maximum sound pressure.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return