Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter
-
Abstract
We theoretically investigate the transparency effect with a hybrid system composed of a photonic molecule and dipole emitter. It is shown that the transparency effect incorporates both the coupled resonator-induced transparency (CRIT) effect and the dipole-induced transparency (DIT) effect. It is found that the superposed transparency windows are consistently narrower than the CRIT and DIT transparency windows. Benefiting from the superposed transparency effect, the photonic Faraday rotation effect could be realized in the photonic molecule system, which is useful for entanglement generation and quantum information processing.
Article Text
-
-
-
About This Article
Cite this article:
Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 034204. DOI: 10.1088/0256-307X/36/3/034204
Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 034204. DOI: 10.1088/0256-307X/36/3/034204
|
Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 034204. DOI: 10.1088/0256-307X/36/3/034204
Ji-Bing Yuan, Zhao-Hui Peng, Shi-Qing Tang, Deng-Yu Zhang. Superposed Transparency Effect and Entanglement Generation with Hybrid System of Photonic Molecule and Dipole Emitter[J]. Chin. Phys. Lett., 2019, 36(3): 034204. DOI: 10.1088/0256-307X/36/3/034204
|