Lithium/Silver-Doped Cu2ZnSnS4 with Tunable Band Gaps and Phase Structures: a First-Principles Study

Funds: Supported by the National Natural Science Foundation of China under Grant No 61674073, the Science and Technology Planning Project of Guangdong Province under Grant No 2017A050506056, the Key Basic and Applied Research Project of Guangdong Province under Grant No 2016KZDXM021, and the Project of International as well as Hongkong, Macao and Taiwan Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province under Grant No 2015KGJHZ028.
  • Received Date: April 17, 2018
  • Published Date: July 31, 2018
  • Doping is an effective approach for improving the photovoltaic performance of Cu2ZnSnS4 (CZTS). The doping by substitution of Cu atoms in CZTS with Li and Ag atoms is investigated using density functional theory. The results show that the band gaps of Li2xCu2(1x)ZnSnS4 and Ag2xCu2(1x)ZnSnS4 can be tuned in the ranges of 1.30–3.43 and 1.30–1.63 eV, respectively. The calculation also reveals a phase transition from kesterite to wurtzite-kesterite for Li2xCu2(1x)ZnSnS4 as x is larger than 0.9. The tunable band gaps of Li2xCu2(1x)ZnSnS4 and Ag2xCu2(1x)ZnSnS4 make them beneficial for achieving band-gap-graded solar cells.
  • Article Text

  • [1]
    Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 doi: 10.1063/1.1736034

    CrossRef Google Scholar

    [2]
    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465 doi: 10.1002/aenm.201301465

    CrossRef Google Scholar

    [3]
    Sun K, Yan C, Liu F, Huang J, Zhou F, Stride J A, Green M and Hao X 2016 Adv. Energy Mater. 6 1600046-n/a doi: 10.1002/aenm.201600046

    CrossRef Google Scholar

    [4]
    Scragg J J S, Choubrac L, Lafond A, Ericson T and Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911 doi: 10.1063/1.4863685

    CrossRef Google Scholar

    [5]
    Altamura G, Wang M and Choy K L 2016 Sci. Rep. 6 22109 doi: 10.1038/srep22109

    CrossRef Google Scholar

    [6]
    Pianezzi F, Reinhard P, Chirila A, Bissig B, Nishiwaki S, Buecheler S and Tiwari A N 2014 Phys. Chem. Chem. Phys. 16 8843 doi: 10.1039/c4cp00614c

    CrossRef Google Scholar

    [7]
    Han M, Zhang X and Zeng Z 2017 Phys. Chem. Chem. Phys. 19 17799 doi: 10.1039/C7CP02192E

    CrossRef Google Scholar

    [8]
    Su Z, Tan J M R, Li X, Zeng X, Batabyal S K and Wong L H 2015 Adv. Energy Mater. 5 1500682 doi: 10.1002/aenm.201500682

    CrossRef Google Scholar

    [9]
    Khadka D B, Kim S and Kim J 2016 J. Phys. Chem. C 120 4251 doi: 10.1021/acs.jpcc.5b11594

    CrossRef Google Scholar

    [10]
    Yang Y, Kang X, Huang L, Wei S and Pan D 2015 J. Phys. Chem. C 119 22797 doi: 10.1021/acs.jpcc.5b06381

    CrossRef Google Scholar

    [11]
    H L A I N G Oo W M, Johnson J L, Bhatia A, Lund E A, Nowell M M and Scarpulla M A 2011 J. Electron. Mater. 40 2214 doi: 10.1007/s11664-011-1729-3

    CrossRef Google Scholar

    [12]
    Ananthoju B, Mohapatra J, Jangid M K, Bahadur D, Medhekar N V and Aslam M 2016 Sci. Rep. 6 35369 doi: 10.1038/srep35369

    CrossRef Google Scholar

    [13]
    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R and Gershon T S 2016 J. Chem. Phys. 144 104704 doi: 10.1063/1.4943270

    CrossRef Google Scholar

    [14]
    Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 ACS Energy Lett. 1 1256 doi: 10.1021/acsenergylett.6b00509

    CrossRef Google Scholar

    [15]
    Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Inorg. Chem. 56 2712 doi: 10.1021/acs.inorgchem.6b02865

    CrossRef Google Scholar

    [16]
    Ford G M, Guo Q, Agrawal R and Hillhouse H W 2011 Chem. Mater. 23 2626 doi: 10.1021/cm2002836

    CrossRef Google Scholar

    [17]
    Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-02569600008-0

    CrossRef Google Scholar

    [18]
    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 doi: 10.1103/PhysRevB.59.1758

    CrossRef Google Scholar

    [19]
    Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 doi: 10.1063/1.1564060

    CrossRef Google Scholar

    [20]
    Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748 doi: 10.1103/PhysRevB.16.1748

    CrossRef Google Scholar

    [21]
    Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211 doi: 10.1103/PhysRevB.79.165211

    CrossRef Google Scholar

    [22]
    Chen S, Walsh A, Luo Y, Yang J H , Gong X G and Wei S H 2010 Phys. Rev. B 82 195203 doi: 10.1103/PhysRevB.82.195203

    CrossRef Google Scholar

    [23]
    Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Thin Solid Films 603 224 doi: 10.1016/j.tsf.2016.02.005

    CrossRef Google Scholar

    [24]
    Yuan Z G, Cheng S Y, Xiang H J, Gong X G, Walsh A, Park J S, Repins I and Wei S H 2015 Adv. Funct. Mater. 25 6733 doi: 10.1002/adfm.201502272

    CrossRef Google Scholar

    [25]
    Peng H and Lany S 2013 Phys. Rev. B 87 174113 doi: 10.1103/PhysRevB.87.174113

    CrossRef Google Scholar

    [26]
    Bai Y, Zhang Q, Luo G, Bu Y, Zhu L, Fan L and Wang B 2017 Phys. Chem. Chem. Phys. 19 15394 doi: 10.1039/C7CP01627A

    CrossRef Google Scholar

    [27]
    Xiao W, Wang J N, Zhao X S, Wang J W, Huang G J, Cheng L, Jiang L J and Wang L G 2015 Sol. Energy 116 125 doi: 10.1016/j.solener.2015.04.005

    CrossRef Google Scholar

    [28]
    Elaheh G, Hossein M, Janos K and Claudia F 2015 J. Phys. D 48 482001 doi: 10.1088/0022-3727/48/48/482001

    CrossRef Google Scholar

    [29]
    Kumar M, Zhao H and Persson C 2013 Thin Solid Films 535 318 doi: 10.1016/j.tsf.2012.11.063

    CrossRef Google Scholar

    [30]
    Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805 doi: 10.1088/1674-1056/24/5/056805

    CrossRef Google Scholar

    [31]
    Zhao Z and Zhao X 2015 J. Semicond. 36 083004 doi: 10.1088/1674-4926/36/8/083004

    CrossRef Google Scholar

    [32]
    Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401 doi: 10.1039/C7EE01405H

    CrossRef Google Scholar

  • Related Articles

    [1]LI Er-Tao, LI Zhi-Hong, SU Jun, GUO Bing, LI Yun-Ju, YAN Sheng-Quan, BAI Xi-Xiang, WANG You-Bao, WANG Bao-Xiang, LIAN Gang, ZENG Sheng, FANG Xiao, ZHAO Wei-Juan, LIU Wei-Ping. Astrophysical Rates for the 6He(p, γ)7Li Reaction [J]. Chin. Phys. Lett., 2011, 28(5): 052102. doi: 10.1088/0256-307X/28/5/052102
    [2]FAISAL Jamil-Qureshi, LOU Jian-Ling, YE Yan-Lin, CAO Zhong-Xin, JIANG Dong-Xing, ZHENG Tao, HUA Hui, LI Zhi-Huan, LI Xiang-Qing, GE Yu-Cheng, PANG Dan-Yang, LI Qi-Te, XIAO Jun, LV Lin-Hui, QIAO Rui, YOU Hai-Bo, CHEN Rui-Jiu, LU Fei, Sakurai H, Otsu H, Nishimura M, Sakaguchi S, Baba H, Togano Y, Yoneda K, LI Chen, WANG Shuo, WANG He, LI Kuo-Ang, Nakamura T, Nakayama Y, Kondo Y, Deguchi S, Satou Y, Tshoo K H. Elastic Scattering of 6He + p at 82.3MeV/nucleon [J]. Chin. Phys. Lett., 2010, 27(9): 092501. doi: 10.1088/0256-307X/27/9/092501
    [3]SU Jun, LI Zhi-Hong, GUO Bing, BAI Xi-Xiang, LI Zhi-Chang, LIU Jian-Cheng, WANG You-Bao, LIAN Gang, ZENG Sheng, WANG Bao-Xiang, YAN Sheng-Quan, LI Yun-Ju, LI Er-Tao, FAN Qi-Wen, LIU Wei-Ping. Neutron Spectroscopic Factors of 7Li and Astrophysical 6Li(n,γ)7Li Reaction Rates [J]. Chin. Phys. Lett., 2010, 27(5): 052101. doi: 10.1088/0256-307X/27/5/052101
    [4]LI Er-Tao, LI Zhi-Hong, LI Yun-Ju, YAN Sheng-Quan, BAI Xi-Xiang, GUOBing, SU Jun, WANG You-Bao, WANG Bao-Xiang, LIAN Gang, ZENGSheng, FANG Xiao, ZHAO Wei-Juan, LIU Wei-Ping. Angular Distribution of the 12C(6He, 7Li)11B Reaction [J]. Chin. Phys. Lett., 2009, 26(7): 072401. doi: 10.1088/0256-307X/26/7/072401
    [5]WU Zhen-Dong, LIN Cheng-Jian, ZHANG Huan-Qiao, LIU Zu-Hua, YANG Feng, AN Guang-Peng, ZHANG Chun-Lei, ZHANG Gao-Long, JIA Hui-Ming, XU Xin-Xing, BAI Chun-Lin, YU Ning, JIA Fei. Optical Potential Parameters for Halo Nucleus System 6He+12C from Transfer Reaction 11B(7Li, 6He)12C [J]. Chin. Phys. Lett., 2009, 26(2): 022503. doi: 10.1088/0256-307X/26/2/022503
    [6]PANG Dan-Yang, YE Yan-Lin, JIANG Dong-Xing, ZHENG Tao, LI Zhi-Huan, LI Xiang-Qing, GE Yu-Cheng, HUA Hui, WU Cui-E, LOU Jian-Ling, LU Fei, FAN Feng-Ying, A. Ozawa, Y. Yamaguchi, R. Kanungo, D. Fang, I.Tanihata. Single-Proton Pickup Reaction of the Halo Nucleus 6He on a 9Be Target at 25MeV/nucleon [J]. Chin. Phys. Lett., 2007, 24(10): 2785-2788.
    [7]ZENG Sheng, LIU Wei-Ping, LI Zhi-Hong, BAI Xi-Xiang, YAN Sheng-Quan, WANG Bao-Xiang, LIAN Gang, SU Jun. Measurement of 2H(8Li,9Be)n Reaction Relevant to Primordial Nucleosynthesis [J]. Chin. Phys. Lett., 2005, 22(9): 2219-2221.
    [8]WANG Jia, YE Yan-Lin, JIANG Dong-Xing, ZHANG Gao-Long, PANG Dan-Yang, LI Zhi-Huan, ZHENG Tao, LI Xiang-Qing, WANG Quan-Jin, HU Qing-Yuan, WU Cui-E, A. Ozawa, Y. Yamaguchi, R. Kanungo, D. Fang, I. Tanihata. Measurement of the Breakup Cross Sections in 6He+9Be Reaction at 25MeV/Nucleon [J]. Chin. Phys. Lett., 2005, 22(6): 1370-1373.
    [9]PANG Dan-Yang, YE Yan-Lin, JIANG Dong-Xing, ZHENG Tao, WANG Quan-Jin, LI Zhi-Huan, LI Xiang-Qing, GE Yu-Cheng, WU Cui-E, ZHANG Gao-Long, HU Qing-Yuan, WANG Jia, A. Ozawa, Y. Yamaguchi, R. Kanungo, D. Fang, I.Tanihata. Quasielastic Scattering of the Halo Nucleus 6He at 25 MeV/u from a 9Be Target [J]. Chin. Phys. Lett., 2004, 21(11): 2151-2154.
    [10]BAO Cheng-Guang. A Qualitative Analysis of Channel Wave Functions and Widths of the Low-lying States of 6Li [J]. Chin. Phys. Lett., 2000, 17(1): 10-12.

Catalog

    Article views (20) PDF downloads (317) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return