Lithium/Silver-Doped CuZnSnS with Tunable Band Gaps and Phase Structures: a First-Principles Study
-
Abstract
Doping is an effective approach for improving the photovoltaic performance of CuZnSnS (CZTS). The doping by substitution of Cu atoms in CZTS with Li and Ag atoms is investigated using density functional theory. The results show that the band gaps of LiCuZnSnS and AgCuZnSnS can be tuned in the ranges of 1.30–3.43 and 1.30–1.63 eV, respectively. The calculation also reveals a phase transition from kesterite to wurtzite-kesterite for LiCuZnSnS as is larger than 0.9. The tunable band gaps of LiCuZnSnS and AgCuZnSnS make them beneficial for achieving band-gap-graded solar cells. -
-
References
[1] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 doi: 10.1063/1.1736034[2] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465 doi: 10.1002/aenm.201301465[3] Sun K, Yan C, Liu F, Huang J, Zhou F, Stride J A, Green M and Hao X 2016 Adv. Energy Mater. 6 1600046-n/a doi: 10.1002/aenm.201600046[4] Scragg J J S, Choubrac L, Lafond A, Ericson T and Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911 doi: 10.1063/1.4863685[5] Altamura G, Wang M and Choy K L 2016 Sci. Rep. 6 22109 doi: 10.1038/srep22109[6] Pianezzi F, Reinhard P, Chirila A, Bissig B, Nishiwaki S, Buecheler S and Tiwari A N 2014 Phys. Chem. Chem. Phys. 16 8843 doi: 10.1039/c4cp00614c[7] Han M, Zhang X and Zeng Z 2017 Phys. Chem. Chem. Phys. 19 17799 doi: 10.1039/C7CP02192E[8] Su Z, Tan J M R, Li X, Zeng X, Batabyal S K and Wong L H 2015 Adv. Energy Mater. 5 1500682 doi: 10.1002/aenm.201500682[9] Khadka D B, Kim S and Kim J 2016 J. Phys. Chem. C 120 4251 doi: 10.1021/acs.jpcc.5b11594[10] Yang Y, Kang X, Huang L, Wei S and Pan D 2015 J. Phys. Chem. C 119 22797 doi: 10.1021/acs.jpcc.5b06381[11] H L A I N G Oo W M, Johnson J L, Bhatia A, Lund E A, Nowell M M and Scarpulla M A 2011 J. Electron. Mater. 40 2214 doi: 10.1007/s11664-011-1729-3[12] Ananthoju B, Mohapatra J, Jangid M K, Bahadur D, Medhekar N V and Aslam M 2016 Sci. Rep. 6 35369 doi: 10.1038/srep35369[13] Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R and Gershon T S 2016 J. Chem. Phys. 144 104704 doi: 10.1063/1.4943270[14] Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 ACS Energy Lett. 1 1256 doi: 10.1021/acsenergylett.6b00509[15] Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Inorg. Chem. 56 2712 doi: 10.1021/acs.inorgchem.6b02865[16] Ford G M, Guo Q, Agrawal R and Hillhouse H W 2011 Chem. Mater. 23 2626 doi: 10.1021/cm2002836[17] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-02569600008-0[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 doi: 10.1103/PhysRevB.59.1758[19] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 doi: 10.1063/1.1564060[20] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748 doi: 10.1103/PhysRevB.16.1748[21] Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211 doi: 10.1103/PhysRevB.79.165211[22] Chen S, Walsh A, Luo Y, Yang J H , Gong X G and Wei S H 2010 Phys. Rev. B 82 195203 doi: 10.1103/PhysRevB.82.195203[23] Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Thin Solid Films 603 224 doi: 10.1016/j.tsf.2016.02.005[24] Yuan Z G, Cheng S Y, Xiang H J, Gong X G, Walsh A, Park J S, Repins I and Wei S H 2015 Adv. Funct. Mater. 25 6733 doi: 10.1002/adfm.201502272[25] Peng H and Lany S 2013 Phys. Rev. B 87 174113 doi: 10.1103/PhysRevB.87.174113[26] Bai Y, Zhang Q, Luo G, Bu Y, Zhu L, Fan L and Wang B 2017 Phys. Chem. Chem. Phys. 19 15394 doi: 10.1039/C7CP01627A[27] Xiao W, Wang J N, Zhao X S, Wang J W, Huang G J, Cheng L, Jiang L J and Wang L G 2015 Sol. Energy 116 125 doi: 10.1016/j.solener.2015.04.005[28] Elaheh G, Hossein M, Janos K and Claudia F 2015 J. Phys. D 48 482001 doi: 10.1088/0022-3727/48/48/482001[29] Kumar M, Zhao H and Persson C 2013 Thin Solid Films 535 318 doi: 10.1016/j.tsf.2012.11.063[30] Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805 doi: 10.1088/1674-1056/24/5/056805[31] Zhao Z and Zhao X 2015 J. Semicond. 36 083004 doi: 10.1088/1674-4926/36/8/083004[32] Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401 doi: 10.1039/C7EE01405H -
Related Articles
[1] LI Er-Tao, LI Zhi-Hong, SU Jun, GUO Bing, LI Yun-Ju, YAN Sheng-Quan, BAI Xi-Xiang, WANG You-Bao, WANG Bao-Xiang, LIAN Gang, ZENG Sheng, FANG Xiao, ZHAO Wei-Juan, LIU Wei-Ping. Astrophysical Rates for the 6He(p, γ)7Li Reaction [J]. Chin. Phys. Lett., 2011, 28(5): 052102. doi: 10.1088/0256-307X/28/5/052102 [2] FAISAL Jamil-Qureshi, LOU Jian-Ling, YE Yan-Lin, CAO Zhong-Xin, JIANG Dong-Xing, ZHENG Tao, HUA Hui, LI Zhi-Huan, LI Xiang-Qing, GE Yu-Cheng, PANG Dan-Yang, LI Qi-Te, XIAO Jun, LV Lin-Hui, QIAO Rui, YOU Hai-Bo, CHEN Rui-Jiu, LU Fei, Sakurai H, Otsu H, Nishimura M, Sakaguchi S, Baba H, Togano Y, Yoneda K, LI Chen, WANG Shuo, WANG He, LI Kuo-Ang, Nakamura T, Nakayama Y, Kondo Y, Deguchi S, Satou Y, Tshoo K H. Elastic Scattering of 6He + p at 82.3MeV/nucleon [J]. Chin. Phys. Lett., 2010, 27(9): 092501. doi: 10.1088/0256-307X/27/9/092501 [3] SU Jun, LI Zhi-Hong, GUO Bing, BAI Xi-Xiang, LI Zhi-Chang, LIU Jian-Cheng, WANG You-Bao, LIAN Gang, ZENG Sheng, WANG Bao-Xiang, YAN Sheng-Quan, LI Yun-Ju, LI Er-Tao, FAN Qi-Wen, LIU Wei-Ping. Neutron Spectroscopic Factors of 7Li and Astrophysical 6Li(n,γ)7Li Reaction Rates [J]. Chin. Phys. Lett., 2010, 27(5): 052101. doi: 10.1088/0256-307X/27/5/052101 [4] LI Er-Tao, LI Zhi-Hong, LI Yun-Ju, YAN Sheng-Quan, BAI Xi-Xiang, GUOBing, SU Jun, WANG You-Bao, WANG Bao-Xiang, LIAN Gang, ZENGSheng, FANG Xiao, ZHAO Wei-Juan, LIU Wei-Ping. Angular Distribution of the 12C(6He, 7Li)11B Reaction [J]. Chin. Phys. Lett., 2009, 26(7): 072401. doi: 10.1088/0256-307X/26/7/072401 [5] WU Zhen-Dong, LIN Cheng-Jian, ZHANG Huan-Qiao, LIU Zu-Hua, YANG Feng, AN Guang-Peng, ZHANG Chun-Lei, ZHANG Gao-Long, JIA Hui-Ming, XU Xin-Xing, BAI Chun-Lin, YU Ning, JIA Fei. Optical Potential Parameters for Halo Nucleus System 6He+12C from Transfer Reaction 11B(7Li, 6He)12C [J]. Chin. Phys. Lett., 2009, 26(2): 022503. doi: 10.1088/0256-307X/26/2/022503 [6] PANG Dan-Yang, YE Yan-Lin, JIANG Dong-Xing, ZHENG Tao, LI Zhi-Huan, LI Xiang-Qing, GE Yu-Cheng, HUA Hui, WU Cui-E, LOU Jian-Ling, LU Fei, FAN Feng-Ying, A. Ozawa, Y. Yamaguchi, R. Kanungo, D. Fang, I.Tanihata. Single-Proton Pickup Reaction of the Halo Nucleus 6He on a 9Be Target at 25MeV/nucleon [J]. Chin. Phys. Lett., 2007, 24(10): 2785-2788. [7] ZENG Sheng, LIU Wei-Ping, LI Zhi-Hong, BAI Xi-Xiang, YAN Sheng-Quan, WANG Bao-Xiang, LIAN Gang, SU Jun. Measurement of 2H(8Li,9Be)n Reaction Relevant to Primordial Nucleosynthesis [J]. Chin. Phys. Lett., 2005, 22(9): 2219-2221. [8] WANG Jia, YE Yan-Lin, JIANG Dong-Xing, ZHANG Gao-Long, PANG Dan-Yang, LI Zhi-Huan, ZHENG Tao, LI Xiang-Qing, WANG Quan-Jin, HU Qing-Yuan, WU Cui-E, A. Ozawa, Y. Yamaguchi, R. Kanungo, D. Fang, I. Tanihata. Measurement of the Breakup Cross Sections in 6He+9Be Reaction at 25MeV/Nucleon [J]. Chin. Phys. Lett., 2005, 22(6): 1370-1373. [9] PANG Dan-Yang, YE Yan-Lin, JIANG Dong-Xing, ZHENG Tao, WANG Quan-Jin, LI Zhi-Huan, LI Xiang-Qing, GE Yu-Cheng, WU Cui-E, ZHANG Gao-Long, HU Qing-Yuan, WANG Jia, A. Ozawa, Y. Yamaguchi, R. Kanungo, D. Fang, I.Tanihata. Quasielastic Scattering of the Halo Nucleus 6He at 25 MeV/u from a 9Be Target [J]. Chin. Phys. Lett., 2004, 21(11): 2151-2154. [10] BAO Cheng-Guang. A Qualitative Analysis of Channel Wave Functions and Widths of the Low-lying States of 6Li [J]. Chin. Phys. Lett., 2000, 17(1): 10-12.