Possible Evidence for Spin-Transfer Torque Induced by Spin-Triplet Supercurrents

  • The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature T_\rm C, the ferromagnetic resonance field at X-band (\sim9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return