Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels
-
Abstract
Four kinds of Au nanorods (NRs) with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal (L) and transverse (T) modes. During the femto-second Z-scan experiments, huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energy level L. This means that the energy may transfer between longitudinal and transverse energy levels in the same and/or different Au NRs. It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency. This method is significant for the preparation of high-efficiency saturable absorption devices.
Article Text
-
-
-
About This Article
Cite this article:
Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 067801. DOI: 10.1088/0256-307X/35/6/067801
Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 067801. DOI: 10.1088/0256-307X/35/6/067801
|
Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 067801. DOI: 10.1088/0256-307X/35/6/067801
Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 067801. DOI: 10.1088/0256-307X/35/6/067801
|