Mechanism of Electromagnetic Flow Control Enhanced by Electro-Discharge in Water

Funds: Supported by the Specialized Research Fund of the Transient Physics Laboratory under Grant No KX21373.
  • Received Date: January 09, 2018
  • Published Date: April 30, 2018
  • Pulsed discharge utilized to achieve large current density in the electromagnetic flow control is numerically studied. A mathematic discharge model is established to calculate the plasma channel, and an actuator is designed to generate the Lorentz force in the micro plasma channel. During the discharge process, the resistance in the channel decreases rapidly and a large current density appears between the discharge electrodes. After the actuator is applied in the leading edge of a flat plate, the separation region and downstream turbulent boundary layer on the plate disappear. Meanwhile, a skin-friction drag force reduction is achieved.
  • Article Text

  • [1]
    Rossi L and Thibault J 2002 J. Turbul. 3 N5 doi: 10.1088/1468-5248/3/1/005

    CrossRef Google Scholar

    [2]
    Liu Z K, Zhou B M, Liu H X, Liu Z G and Ji Y L 2011 Chin. Phys. Lett. 28 094703 doi: 10.1088/0256-307X/28/9/094703

    CrossRef Google Scholar

    [3]
    Yan L G, Wang Z K, Xue C L, Gao Z Y and Zhao B Z 2000 IEEE Trans. Appl. Supercond. 10 955 doi: 10.1109/77.828390

    CrossRef Google Scholar

    [4]
    Munhoz D S, Bityurin V A, Klimov A I and Moralev I A 2016 J. Phys.: Conf. Ser. 774 012154 doi: 10.1088/1742-6596/774/1/012154

    CrossRef Google Scholar

    [5]
    Yu J L, He L M, Wei D, Wang Y Q and Chun D 2013 Chin. Phys. B 22 055201 doi: 10.1088/1674-1056/22/5/055201

    CrossRef Google Scholar

    [6]
    Liu W Z, Zhao S, Chai M L and Niu J Q 2017 Chin. Phys. Lett. 34 085203 doi: 10.1088/0256-307X/34/8/085203

    CrossRef Google Scholar

    [7]
    Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646 doi: 10.1109/94.879360

    CrossRef Google Scholar

    [8]
    Šunka P 2001 Phys. Plasmas 8 2587 doi: 10.1063/1.1356742

    CrossRef Google Scholar

    [9]
    Sun Y, Timoshkin I V, Given M J, Wilson M P, Wang T, Macgregor S and Bonifaci N 2016 IEEE Trans. Plasma Sci. 44 2156 doi: 10.1109/TPS.2016.2583066

    CrossRef Google Scholar

    [10]
    Lisitsyn I V, Nomlyama H, Katsuki S and Akiyama H 1999 IEEE Trans. Dielectr. Electr. Insul. 6 351 doi: 10.1109/94.775622

    CrossRef Google Scholar

    [11]
    Jones H M and Kunhardt E E 1995 J. Appl. Phys. 77 795 doi: 10.1063/1.359002

    CrossRef Google Scholar

    [12]
    Qian J, Joshi R P, Kolb J, Dickens K H S, Neuber A, Butcher M, Cevallos M, Schamiloglu H K and Gaudet J 2005 J. Appl. Phys. 97 113304 doi: 10.1063/1.1921338

    CrossRef Google Scholar

    [13]
    Jones H M and Kunhardt E E 1995 J. Appl. Phys. 78 3308 doi: 10.1063/1.360023

    CrossRef Google Scholar

    [14]
    Seepersad Y, Dobrynin D, Pekker M, Shneider M N and Fridman A 2013 J. Phys. D 46 2368

    Google Scholar

    [15]
    Kratel A W H 1996 PhD Dissertation California: California Institute of Technology

    Google Scholar

    [16]
    Chung K, Lee S, Hwang Y S and Kim C Y 2015 Curr. Appl. Phys. 15 977 doi: 10.1016/j.cap.2015.05.010

    CrossRef Google Scholar

    [17]
    Krinberg I A and Paperny V L 2002 J. Phys. D 35 549 doi: 10.1088/0022-3727/35/6/310

    CrossRef Google Scholar

    [18]
    Jeong J and Hussain F 1995 J. Fluid Mech. 285 69 doi: 10.1017/S0022112095000462

    CrossRef Google Scholar

Catalog

    Article views (96) PDF downloads (349) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return