Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography
-
Abstract
We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm, and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.
Article Text
-
-
-
About This Article
Cite this article:
Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 054207. DOI: 10.1088/0256-307X/35/5/054207
Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 054207. DOI: 10.1088/0256-307X/35/5/054207
|
Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 054207. DOI: 10.1088/0256-307X/35/5/054207
Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 054207. DOI: 10.1088/0256-307X/35/5/054207
|