Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides
-
Abstract
The single photon frequency conversion is investigated theoretically in the system composed of a V-type system chiral coupling to a pair of waveguides. The single photon scattering amplitudes are obtained using the real-space Hamiltonian. The calculated results show that the probability of single photon frequency down- or up-conversion can reach a unit by choosing appropriate parameters in the non-dissipative system with perfect chiral coupling. We present a nonreciprocal single photon beam splitter whose frequency of the output photon is different from that of the input photon. The influences of dissipations and non-perfect chiral coupling on the single frequency conversion are also shown. Our results may be useful in designing quantum devices at the single-photon level.
Article Text
-
-
-
About This Article
Cite this article:
Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 054202. DOI: 10.1088/0256-307X/35/5/054202
Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 054202. DOI: 10.1088/0256-307X/35/5/054202
|
Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 054202. DOI: 10.1088/0256-307X/35/5/054202
Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 054202. DOI: 10.1088/0256-307X/35/5/054202
|