Sequential Parameter Estimation Using Modal Dispersion Curves in Shallow Water

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11434012, 11774374, 11404366 and 41561144006.
  • Received Date: November 27, 2017
  • Published Date: March 31, 2018
  • Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile (SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.
  • Article Text

  • [1]
    Munk W and Wunsch C 1979 Deep. Sea. Res. 26 123 doi: 10.1016/0198-01497990073-6

    CrossRef Google Scholar

    [2]
    Tolstoy A et al. 1991 J. Acoust. Soc. Am. 89 1119 doi: 10.1121/1.400647

    CrossRef Google Scholar

    [3]
    Yardim C et al. 2012 J. Acoust. Soc. Am. 131 1722 doi: 10.1121/1.3666012

    CrossRef Google Scholar

    [4]
    Candy J and Sullivan E 1993 IEEE J. Oceanic Eng. 18 240 doi: 10.1109/JOE.1993.236362

    CrossRef Google Scholar

    [5]
    Carrière O et al. 2009 IEEE J. Oceanic Eng. 34 586 doi: 10.1109/JOE.2009.2033954

    CrossRef Google Scholar

    [6]
    Yardim C et al. 2010 J. Acoust. Soc. Am. 128 75 doi: 10.1121/1.3438475

    CrossRef Google Scholar

    [7]
    Huang J M et al. 2014 J. Acoust. Soc. Am. 136 EL129 doi: 10.1121/1.4890197

    CrossRef Google Scholar

    [8]
    Li J L and Zhou H 2013 J. Acoust. Soc. Am. 133 1377 doi: 10.1121/1.4790354

    CrossRef Google Scholar

    [9]
    Duan R et al. 2016 J. Acoust. Soc. Am. 139 70 doi: 10.1121/1.4939122

    CrossRef Google Scholar

    [10]
    Niu H Q et al. 2014 Acta Acust. 39 1

    Google Scholar

    [11]
    Bonnel J et al. 2013 J. Acoust. Soc. Am. 134 120 doi: 10.1121/1.4809678

    CrossRef Google Scholar

    [12]
    Evensen G 2003 Ocean Dyn. 53 343 doi: 10.1007/s10236-003-0036-9

    CrossRef Google Scholar

    [13]
    Niu H Q et al. 2014 J. Acoust. Soc. Am. 136 53 doi: 10.1121/1.4883370

    CrossRef Google Scholar

    [14]
    Guo X L et al. 2015 Chin. Phys. Lett. 32 124302 doi: 10.1088/0256-307X/32/12/124302

    CrossRef Google Scholar

    [15]
    Porter M B 1992 The Kraken Normal Mode Program Tech. Rep. DTIC Document

    Google Scholar

    [16]
    LeBlanc L R and Middleton F H 1980 J. Acoust. Soc. Am. 67 2055 doi: 10.1121/1.384448

    CrossRef Google Scholar

    [17]
    Li Z L and Li F H 2010 Chin. J. Oceanol. Limnol. 28 990 doi: 10.1007/s00343-010-9117-z

    CrossRef Google Scholar

  • Related Articles

    [1]SU Zhou-Ping, JI Zhi-Cheng, ZHU Zhuo-Wei, QUE Li-Zhi, ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity [J]. Chin. Phys. Lett., 2012, 29(5): 054210. doi: 10.1088/0256-307X/29/5/054210
    [2]WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. A Digital Phase Lock Loop for an External Cavity Diode Laser [J]. Chin. Phys. Lett., 2011, 28(8): 084214. doi: 10.1088/0256-307X/28/8/084214
    [3]ZHANG Jin-Chuan, WANG Li-Jun, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo. Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser [J]. Chin. Phys. Lett., 2011, 28(7): 074203. doi: 10.1088/0256-307X/28/7/074203
    [4]HAN Shun-Li, CHENG Bing, ZHANG Jing-Fang, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. Stabilization and Shift of Frequency in an External Cavity Diode Laser with Solenoid-Assisted Saturated Absorption [J]. Chin. Phys. Lett., 2009, 26(6): 063201. doi: 10.1088/0256-307X/26/6/063201
    [5]QI Xiang-Hui, CHEN Wen-Lan, YI Lin, ZHOU Da-Wei, ZHOU Tong, XIAO Qin, DUAN Jun, ZHOU Xiao-Ji, CHEN Xu-Zong. Ultra-Stable Rubidium-Stabilized External-Cavity Diode Laser Based on the Modulation Transfer Spectroscopy Technique [J]. Chin. Phys. Lett., 2009, 26(4): 044205. doi: 10.1088/0256-307X/26/4/044205
    [6]SU Zhou-Ping, LOU Qi-Hong, DONG Jing-Xing, ZHOU Jun, WEI Yun-Rong. Line-Width Reduction of a Laser Diode Array Using an External Cavity with Two Feedback Mirrors [J]. Chin. Phys. Lett., 2007, 24(9): 2587-2589.
    [7]TAN Yi-Dong, ZHANG Shu-Lian. Intensity Tuning in Single Mode Microchip Nd:YAG Laser with External Cavity [J]. Chin. Phys. Lett., 2006, 23(12): 3271-3274.
    [8]FEI Li-Gang, ZHANG Shu-Lian, WAN Xin-Jun. Influence of Optical Feedback from Birefringence External Cavity on Intensity Tuning and Polarization of Laser [J]. Chin. Phys. Lett., 2004, 21(10): 1944-1947.
    [9]WU Ke-Ying, ZHANG Han-Yi, ZHENG Xiao-Ping, TENG Xiang, SHI Wei-Wei, GUO Yi-Li. A Step-by-Step Tunable Compound External Cavity Semiconductor Laser with Two-Side Feedback Coupling [J]. Chin. Phys. Lett., 2003, 20(7): 1058-1060.
    [10]ZHANG Tian-cai, HOU Zhan-jia, WANG Jun-min, XIE Chang-de, PENG Kun-chi. Generation of Intensity Squeezing in Laser Diodes by Weak External Cavity Feedback [J]. Chin. Phys. Lett., 1996, 13(10): 734-736.

Catalog

    Article views (107) PDF downloads (508) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return