Thickness Effect on (La0.26Bi0.74)2Ti4O11 Thin-Film Composition and Electrical Properties

Funds: Supported by the Basic Research Project of Shanghai Science and Technology Innovation Action under Grant No 17JC1400300, the National Key Basic Research Program of China under Grant No 2014CB921004, the National Natural Science Foundation of China under Grant No 61674044, and the Program of Shanghai Subject Chief Scientist under Grant No 17XD1400800.
  • Received Date: October 24, 2017
  • Published Date: January 31, 2018
  • Highly oriented (00l) (La0.26Bi0.74)2Ti4O11 thin films are deposited on (100) SrTiO3 substrates using the pulsed laser deposition technique. The grains form a texture of bar-like arrays along SrTiO3 110 directions for the film thickness above 350 nm, in contrast to spherical grains for the reduced film thickness below 220 nm. X-ray diffraction patterns show that the highly ordered bar-like grains are the ensemble of two lattice-matched monoclinic (La,Bi)4Ti3O12 and TiO2 components above a critical film thickness. Otherwise, the phase decomposes into the random mixture of Bi2Ti2O7 and Bi4Ti3O4 spherical grains in thinner films. The critical thickness can increase up to 440 nm as the films are deposited on LaNiO3-buffered SrTiO3 substrates. The electrical measurements show the dielectric enhancement of the multi-components, and comprehensive charge injection into interfacial traps between (La,Bi)4Ti3O12 and TiO2 components occurs under the application of a threshold voltage for the realization of high-charge storage.
  • Article Text

  • [1]
    Subbarao E C 1962 J. Am. Ceram. Soc. 45 564 doi: 10.1111/j.1151-2916.1962.tb11058.x

    CrossRef Google Scholar

    [2]
    Kahlenberg V and Bohm H 1994 J. Phys.: Condens. Matter 6 6221 doi: 10.1088/0953-8984/6/31/021

    CrossRef Google Scholar

    [3]
    Kahlenberg V and Bohm H 1995 Acta Crystallogr. Sect. B 51 11 doi: 10.1107/S0108768194004386

    CrossRef Google Scholar

    [4]
    Buscaglia M T, Sennour M, Buscaglia V, Bottino C, Kalyani V and Nanni P 2011 Cryst. Growth Des. 11 1394 doi: 10.1021/cg101697r

    CrossRef Google Scholar

    [5]
    Jiang A Q, Cheng Z H, Cheng F, Zhou Y L, He M and Yang G Z 2001 Phys. Rev. B 63 104102 doi: 10.1103/PhysRevB.63.104102

    CrossRef Google Scholar

    [6]
    Jiang A Q, Hu Z X and Zhang L D 1999 J. Appl. Phys. 85 1739 doi: 10.1063/1.369340

    CrossRef Google Scholar

    [7]
    Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812 doi: 10.1063/1.1587685

    CrossRef Google Scholar

    [8]
    Meng J F, Katiyar R S and Zou G T 3.0.CO;2-T">1997 J. Raman Spectrosc. 28 797 doi: 10.1002/SICI1097-455519971028:10<797::AID-JRS150>3.0.CO;2-T

    CrossRef 1997 J. Raman Spectrosc. 28 797" target="_blank">Google Scholar

    [9]
    Jiang A Q, Hu Z X and Zhang L D 1999 Appl. Phys. Lett. 74 114 doi: 10.1063/1.122968

    CrossRef Google Scholar

    [10]
    Black C T and Welser J J 1999 IEEE Trans. Electron Devices 46 776 doi: 10.1109/16.753713

    CrossRef Google Scholar

    [11]
    Hardy A, D'Haen J, Goux L, Dirk, Marlies, Rul H V and Mullens J 2007 Chem. Mater. 19 2994 doi: 10.1021/cm070101x

    CrossRef Google Scholar

    [12]
    Lee B T and Hwang C S 2000 Appl. Phys. Lett. 77 124 doi: 10.1063/1.126897

    CrossRef Google Scholar

    [13]
    Vendik O G, Zubko S P and Ter-Martirosayn L T 1998 Appl. Phys. Lett. 73 37 doi: 10.1063/1.121715

    CrossRef Google Scholar

    [14]
    Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988 doi: 10.1103/PhysRevLett.80.1988

    CrossRef Google Scholar

    [15]
    Park B H, Kang B S, Bu S D, Noh T W, Lee J and Jo W 1999 Nature 401 682 doi: 10.1038/44352

    CrossRef Google Scholar

    [16]
    Yang X N, Huang B B, Wang H B, Shang S H, Yao W F and Wei J Y 2004 J. Cryst. Growth 270 98 doi: 10.1016/j.jcrysgro.2004.05.103

    CrossRef Google Scholar

    [17]
    Mizutani Y, Kiguchi T, Konno T J, Funakubo H and Uchida H 2010 Jpn. J. Appl. Phys. 49 09MA02 doi: 10.1143/JJAP.49.09MA02

    CrossRef Google Scholar

    [18]
    Chu C M and Lin P 1997 Appl. Phys. Lett. 70 249 doi: 10.1063/1.118380

    CrossRef Google Scholar

    [19]
    Nakamura T, Muhammet R, Shimizu M and Shiosaki T 1993 Jpn. J. Appl. Phys. Part. 32 4086 doi: 10.1143/JJAP.32.4086

    CrossRef Google Scholar

    [20]
    Merka O, Bahnemann D W and Wark M 2014 Catal. Today 225 102 doi: 10.1016/j.cattod.2013.09.009

    CrossRef Google Scholar

    [21]
    Borghols W J H, Wagemaker M, Lafont U, Kelder E M and Mulder F M 2008 Chem. Mater. 20 2949 doi: 10.1021/cm703376e

    CrossRef Google Scholar

    [22]
    Lardhi S, Noureldine D, Harb M, Ziani A, Cavallo L and Takanabe K 2016 J. Chem. Phys. 144 134702 doi: 10.1063/1.4945344

    CrossRef Google Scholar

    [23]
    Theis C D, Yeh J, Schlom D G, Hawley M E, Brown G W, Jiang J C and Pan X Q 1998 Appl. Phys. Lett. 72 2817 doi: 10.1063/1.121468

    CrossRef Google Scholar

    [24]
    Shin H, De Guire M R and Heuer A H 1998 J. Appl. Phys. 83 3311 doi: 10.1063/1.367132

    CrossRef Google Scholar

    [25]
    Ha H K, Yoshimoto M, Koinuma H, Moon B K and Ishiwara H 1996 Appl. Phys. Lett. 68 2965 doi: 10.1063/1.116370

    CrossRef Google Scholar

    [26]
    Shimada S, Kodaira K and Matsushita T 1977 J. Cryst. Growth 41 317 doi: 10.1016/0022-02487790062-8

    CrossRef Google Scholar

    [27]
    Dobal P S and Katiyar R S 2002 J. Raman Spectrosc. 33 405 doi: 10.1002/jrs.876

    CrossRef Google Scholar

    [28]
    Idink H, Srikanth V, White W B and Subbarao E C 1994 J. Appl. Phys. 76 1819 doi: 10.1063/1.357700

    CrossRef Google Scholar

    [29]
    Wu Y, Zhang D, Yu J and Wang Y 2009 Mater. Chem. Phys. 113 422 doi: 10.1016/j.matchemphys.2008.07.103

    CrossRef Google Scholar

    [30]
    Marchand R, Brohan L and Tournoux M 1980 Mater. Res. Bull. 15 1129 doi: 10.1016/0025-54088090076-8

    CrossRef Google Scholar

    [31]
    Shen M R, Ge S B and Cao W W 2001 J. Phys. D 34 2935 doi: 10.1088/0022-3727/34/19/301

    CrossRef Google Scholar

    [32]
    Jiang A Q, Chen Z H, Zhou Y L and Yang G Z 2001 Solid State Commun. 120 65 doi: 10.1016/S0038-10980100348-9

    CrossRef Google Scholar

    [33]
    Csikor F F, Motz C, Weygand D, Zaiser M and Zapperi S 2007 Science 318 251 doi: 10.1126/science.1143719

    CrossRef Google Scholar

    [34]
    Fouskova A and Cross L E 1970 J. Appl. Phys. 41 2834 doi: 10.1063/1.1659324

    CrossRef Google Scholar

  • Related Articles

    [1]FU Yun-Liang, WU Ying-Cai, YUAN Yi-Fang, CHEN Bao-Xue. Raman Spectra of Proton-Exchanged LiNbO3 Optical Waveguides [J]. Chin. Phys. Lett., 2004, 21(7): 1292-1293.
    [2]YAO Jian-Quan, YU Yi-Zhong, WANG Peng, WANG Tao, ZHANG Bai-Gang, DING Xin, CHEN Ji, H. J. Peng, H. S. Kwok. Nearly-Noncritical Phase Matching in MgO:LiNbO3 Optical Parametric Oscillator [J]. Chin. Phys. Lett., 2001, 18(9): 1214-1217.
    [3]HU Hui, CHEN Feng, LU Fei, ZHANG Jian-Hua, LIU Ji-Tian, WANG Ke-Ming, SHI Bo-Rong, SHEN Ding-Yu, WANG Xue-Mei. Optical Waveguide Formation in LiNbO3 by the 2.6 MeVNickel Ions Implantation [J]. Chin. Phys. Lett., 2001, 18(2): 242-244.
    [4]LIU Xian-jie, WANG Zhen-lin, WU Jun, MIN Nai-ben. Second-Harmonic Generation in Thue-Morse Optical Superlattice [J]. Chin. Phys. Lett., 1998, 15(6): 426-428.
    [5]YUAN Duo-rong, XU Dong, ZHANG Nan, LIU Ming-guo, JIANG Min-hua. Organic Nonlinear Optical Crystal MHBA for Compact Blue-Violet Laser [J]. Chin. Phys. Lett., 1996, 13(11): 841-843.
    [6]ZHANG Zhi-yong, WANG Lu-chun, ZHU Yong-yuan, ZHU Shi-ning, MIN Nai-ben (Nai-ben Ming). Direct Observation of Domain-Inverted Regions in Proton-Exchanged LiNbO3 Using Transmission Electron Microscopy [J]. Chin. Phys. Lett., 1996, 13(5): 362-365.
    [7]CHANG Yongmao, WEN Jinke, WANG Huafu, LI Bing. Refractive Index Measurement and Second Harmonic Generation in a Series of LiNbO3:Mg (5mol%) Crystals [J]. Chin. Phys. Lett., 1992, 9(8): 427-430.
    [8]YAO Jianquan, SHI weiqiang, J. E. Millerd, XU Guangfeng, E. Garmire, M. Birnbaum. Room Temperature 1.06-0.53 μm Second Harmonic Generation with MgO:LiNbO3 [J]. Chin. Phys. Lett., 1991, 8(6): 290-291.
    [9]WU Lusheng, P.GUNTER. Second Harmonic Generation in a KNbO3 Slab Waveguide [J]. Chin. Phys. Lett., 1991, 8(4): 180-183.
    [10]LI yongfang, SHEN Jiangi, JIN Haiyan, QIN Lijuan, FU Kede, WANG Zugeng. Generation of Violet and Blue Diffuse-Bands of Stimulated Radiation in Lithium Dimer [J]. Chin. Phys. Lett., 1991, 8(4): 176-179.

Catalog

    Article views (193) PDF downloads (301) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return