Thickness Effect on (La0.26Bi0.74)2Ti4O11 Thin-Film Composition and Electrical Properties
-
Abstract
Highly oriented (00l) (La0.26Bi0.74)2Ti4O11 thin films are deposited on (100) SrTiO3 substrates using the pulsed laser deposition technique. The grains form a texture of bar-like arrays along SrTiO3 ⟨110⟩ directions for the film thickness above 350 nm, in contrast to spherical grains for the reduced film thickness below 220 nm. X-ray diffraction patterns show that the highly ordered bar-like grains are the ensemble of two lattice-matched monoclinic (La,Bi)4Ti3O12 and TiO2 components above a critical film thickness. Otherwise, the phase decomposes into the random mixture of Bi2Ti2O7 and Bi4Ti3O4 spherical grains in thinner films. The critical thickness can increase up to 440 nm as the films are deposited on LaNiO3-buffered SrTiO3 substrates. The electrical measurements show the dielectric enhancement of the multi-components, and comprehensive charge injection into interfacial traps between (La,Bi)4Ti3O12 and TiO2 components occurs under the application of a threshold voltage for the realization of high-charge storage. -
-
References
[1] Subbarao E C 1962 J. Am. Ceram. Soc. 45 564 doi: 10.1111/j.1151-2916.1962.tb11058.x[2] Kahlenberg V and Bohm H 1994 J. Phys.: Condens. Matter 6 6221 doi: 10.1088/0953-8984/6/31/021[3] Kahlenberg V and Bohm H 1995 Acta Crystallogr. Sect. B 51 11 doi: 10.1107/S0108768194004386[4] Buscaglia M T, Sennour M, Buscaglia V, Bottino C, Kalyani V and Nanni P 2011 Cryst. Growth Des. 11 1394 doi: 10.1021/cg101697r[5] Jiang A Q, Cheng Z H, Cheng F, Zhou Y L, He M and Yang G Z 2001 Phys. Rev. B 63 104102 doi: 10.1103/PhysRevB.63.104102[6] Jiang A Q, Hu Z X and Zhang L D 1999 J. Appl. Phys. 85 1739 doi: 10.1063/1.369340[7] Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812 doi: 10.1063/1.1587685[8] Meng J F, Katiyar R S and Zou G T 3.0.CO;2-T">1997 J. Raman Spectrosc. 28 797 doi: 10.1002/SICI1097-455519971028:10<797::AID-JRS150>3.0.CO;2-TCrossRef 1997 J. Raman Spectrosc. 28 797" target="_blank">Google Scholar
[9] Jiang A Q, Hu Z X and Zhang L D 1999 Appl. Phys. Lett. 74 114 doi: 10.1063/1.122968[10] Black C T and Welser J J 1999 IEEE Trans. Electron Devices 46 776 doi: 10.1109/16.753713[11] Hardy A, D'Haen J, Goux L, Dirk, Marlies, Rul H V and Mullens J 2007 Chem. Mater. 19 2994 doi: 10.1021/cm070101x[12] Lee B T and Hwang C S 2000 Appl. Phys. Lett. 77 124 doi: 10.1063/1.126897[13] Vendik O G, Zubko S P and Ter-Martirosayn L T 1998 Appl. Phys. Lett. 73 37 doi: 10.1063/1.121715[14] Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988 doi: 10.1103/PhysRevLett.80.1988[15] Park B H, Kang B S, Bu S D, Noh T W, Lee J and Jo W 1999 Nature 401 682 doi: 10.1038/44352[16] Yang X N, Huang B B, Wang H B, Shang S H, Yao W F and Wei J Y 2004 J. Cryst. Growth 270 98 doi: 10.1016/j.jcrysgro.2004.05.103[17] Mizutani Y, Kiguchi T, Konno T J, Funakubo H and Uchida H 2010 Jpn. J. Appl. Phys. 49 09MA02 doi: 10.1143/JJAP.49.09MA02[18] Chu C M and Lin P 1997 Appl. Phys. Lett. 70 249 doi: 10.1063/1.118380[19] Nakamura T, Muhammet R, Shimizu M and Shiosaki T 1993 Jpn. J. Appl. Phys. Part. 32 4086 doi: 10.1143/JJAP.32.4086[20] Merka O, Bahnemann D W and Wark M 2014 Catal. Today 225 102 doi: 10.1016/j.cattod.2013.09.009[21] Borghols W J H, Wagemaker M, Lafont U, Kelder E M and Mulder F M 2008 Chem. Mater. 20 2949 doi: 10.1021/cm703376e[22] Lardhi S, Noureldine D, Harb M, Ziani A, Cavallo L and Takanabe K 2016 J. Chem. Phys. 144 134702 doi: 10.1063/1.4945344[23] Theis C D, Yeh J, Schlom D G, Hawley M E, Brown G W, Jiang J C and Pan X Q 1998 Appl. Phys. Lett. 72 2817 doi: 10.1063/1.121468[24] Shin H, De Guire M R and Heuer A H 1998 J. Appl. Phys. 83 3311 doi: 10.1063/1.367132[25] Ha H K, Yoshimoto M, Koinuma H, Moon B K and Ishiwara H 1996 Appl. Phys. Lett. 68 2965 doi: 10.1063/1.116370[26] Shimada S, Kodaira K and Matsushita T 1977 J. Cryst. Growth 41 317 doi: 10.1016/0022-02487790062-8[27] Dobal P S and Katiyar R S 2002 J. Raman Spectrosc. 33 405 doi: 10.1002/jrs.876[28] Idink H, Srikanth V, White W B and Subbarao E C 1994 J. Appl. Phys. 76 1819 doi: 10.1063/1.357700[29] Wu Y, Zhang D, Yu J and Wang Y 2009 Mater. Chem. Phys. 113 422 doi: 10.1016/j.matchemphys.2008.07.103[30] Marchand R, Brohan L and Tournoux M 1980 Mater. Res. Bull. 15 1129 doi: 10.1016/0025-54088090076-8[31] Shen M R, Ge S B and Cao W W 2001 J. Phys. D 34 2935 doi: 10.1088/0022-3727/34/19/301[32] Jiang A Q, Chen Z H, Zhou Y L and Yang G Z 2001 Solid State Commun. 120 65 doi: 10.1016/S0038-10980100348-9[33] Csikor F F, Motz C, Weygand D, Zaiser M and Zapperi S 2007 Science 318 251 doi: 10.1126/science.1143719[34] Fouskova A and Cross L E 1970 J. Appl. Phys. 41 2834 doi: 10.1063/1.1659324 -
Related Articles
[1] FU Yun-Liang, WU Ying-Cai, YUAN Yi-Fang, CHEN Bao-Xue. Raman Spectra of Proton-Exchanged LiNbO3 Optical Waveguides [J]. Chin. Phys. Lett., 2004, 21(7): 1292-1293. [2] YAO Jian-Quan, YU Yi-Zhong, WANG Peng, WANG Tao, ZHANG Bai-Gang, DING Xin, CHEN Ji, H. J. Peng, H. S. Kwok. Nearly-Noncritical Phase Matching in MgO:LiNbO3 Optical Parametric Oscillator [J]. Chin. Phys. Lett., 2001, 18(9): 1214-1217. [3] HU Hui, CHEN Feng, LU Fei, ZHANG Jian-Hua, LIU Ji-Tian, WANG Ke-Ming, SHI Bo-Rong, SHEN Ding-Yu, WANG Xue-Mei. Optical Waveguide Formation in LiNbO3 by the 2.6 MeVNickel Ions Implantation [J]. Chin. Phys. Lett., 2001, 18(2): 242-244. [4] LIU Xian-jie, WANG Zhen-lin, WU Jun, MIN Nai-ben. Second-Harmonic Generation in Thue-Morse Optical Superlattice [J]. Chin. Phys. Lett., 1998, 15(6): 426-428. [5] YUAN Duo-rong, XU Dong, ZHANG Nan, LIU Ming-guo, JIANG Min-hua. Organic Nonlinear Optical Crystal MHBA for Compact Blue-Violet Laser [J]. Chin. Phys. Lett., 1996, 13(11): 841-843. [6] ZHANG Zhi-yong, WANG Lu-chun, ZHU Yong-yuan, ZHU Shi-ning, MIN Nai-ben (Nai-ben Ming). Direct Observation of Domain-Inverted Regions in Proton-Exchanged LiNbO3 Using Transmission Electron Microscopy [J]. Chin. Phys. Lett., 1996, 13(5): 362-365. [7] CHANG Yongmao, WEN Jinke, WANG Huafu, LI Bing. Refractive Index Measurement and Second Harmonic Generation in a Series of LiNbO3:Mg (5mol%) Crystals [J]. Chin. Phys. Lett., 1992, 9(8): 427-430. [8] YAO Jianquan, SHI weiqiang, J. E. Millerd, XU Guangfeng, E. Garmire, M. Birnbaum. Room Temperature 1.06-0.53 μm Second Harmonic Generation with MgO:LiNbO3 [J]. Chin. Phys. Lett., 1991, 8(6): 290-291. [9] WU Lusheng, P.GUNTER. Second Harmonic Generation in a KNbO3 Slab Waveguide [J]. Chin. Phys. Lett., 1991, 8(4): 180-183. [10] LI yongfang, SHEN Jiangi, JIN Haiyan, QIN Lijuan, FU Kede, WANG Zugeng. Generation of Violet and Blue Diffuse-Bands of Stimulated Radiation in Lithium Dimer [J]. Chin. Phys. Lett., 1991, 8(4): 176-179.