Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation
-
Abstract
Local surface plasmon resonances (LSPRs) of silver-dielectric-silver multi-layered (SDS-ML) nanotubes are studied by theoretical calculations. Based on quasi-static approximation, the absorption cross section of SDS-ML nanotubes is plotted as a function of wavelength. The results show that SDS-ML nanotubes exhibit strong coupling between the cylindrical silver and nanotubes. The absorption spectra of LSPRs are strongly influenced by changing the radius of the inner core and outer nanotube shell. The longer wavelength is red-shifted by increasing the radius of the inner core and outer shell, while the short wavelength shows the opposite properties. These phenomena are explained by the plasmon hybridization theory. In addition, for clarity, the distributions of electric field intensity at their plasmon resonance wavelengths are also studied.
Article Text
-
-
-
About This Article
Cite this article:
Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 114201. DOI: 10.1088/0256-307X/35/11/114201
Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 114201. DOI: 10.1088/0256-307X/35/11/114201
|
Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 114201. DOI: 10.1088/0256-307X/35/11/114201
Zhao-Wang Wu, Ye-Wan Ma, Li-Hua Zhang, Xun-Chang Yin, Sheng-Bao Zhan. Optical Tunability of Silver-Dielectric-Silver Multi-Layered Cylindrical Nanotubes Using Quasi-Static Approximation[J]. Chin. Phys. Lett., 2018, 35(11): 114201. DOI: 10.1088/0256-307X/35/11/114201
|