Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction
-
Abstract
Solutions to local and nonlocal integrable discrete nonlinear Schrödinger (IDNLS) equations are studied via reduction on the bilinear form. It is shown that these solutions to IDNLS equations can be expressed in terms of the single Casorati determinant under different constraint conditions.
Article Text
-
-
-
About This Article
Cite this article:
Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 110201. DOI: 10.1088/0256-307X/35/11/110201
Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 110201. DOI: 10.1088/0256-307X/35/11/110201
|
Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 110201. DOI: 10.1088/0256-307X/35/11/110201
Ya-Hong Hu, Jun-Chao Chen. Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction[J]. Chin. Phys. Lett., 2018, 35(11): 110201. DOI: 10.1088/0256-307X/35/11/110201
|