Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading
-
Abstract
We investigate deformation and spallation of explosive welded bi-steel plates under gas gun shock loading. Free surface histories are measured to obtain the Hugoniot elastic limit and spall strengths at different impact velocities. Pre- and post-shock microstructures are characterized with optical metallography, scanning electron microscopy, and electron backscatter diffraction. In addition, the Vickers hardness test is conducted. Explosive welding can result in a wavy steel/steel interface, an ultrafine grain region centered at the interface, and a neighboring high deformation region, accompanied by a hardness with the highest value at the interface. Additional shock compression induces a further increase in hardness, and shock-induced deformation occurs in the form of twinning and dislocation slip and depends on the local substructure. Spall damage nucleates and propagates along the ultrafine grain region, due to the initial cracks or weak interface bonding. Spall strengths of bimetal plates can be higher than its constituents. Plate impact offers a promising method for improving explosive welding.
Article Text
-
-
-
About This Article
Cite this article:
Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 018101. DOI: 10.1088/0256-307X/35/1/018101
Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 018101. DOI: 10.1088/0256-307X/35/1/018101
|
Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 018101. DOI: 10.1088/0256-307X/35/1/018101
Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 018101. DOI: 10.1088/0256-307X/35/1/018101
|