Typesetting math: 100%
Express Letter

Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb3Rh7O15

    Show all affliationsShow less
Funds: Supported by the "Shi-Pei Ji Hua", the National Science Foundation of China under Grant Nos 51402019 and 11574377, the Beijing Natural Science Foundation under Grant No 2152011, the National Basic Research Program of China under Grants No 2014CB921500, the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant Nos XDB07020100 and QYZDB-SSW-SLH013, the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and the CEM, and NSF MRSEC under Grant No DMR-1420451.
  • Received Date: July 08, 2017
  • Published Date: July 31, 2017
  • The mixed-valent Pb3Rh7O15 undergoes a Verwey-type transition at Tv180 K, below which the development of Rh3+/Rh4+ charge order induces an abrupt conductor-to-insulator transition in resistivity. Here we investigate the effect of pressure on the Verwey-type transition of Pb3Rh7O15 by measuring its electrical resistivity under hydrostatic pressures up to 8 GPa with a cubic anvil cell apparatus. We find that the application of high pressure can suppress the Verwey-type transition around 3 GPa, above which a metallic state is realized at temperatures below 70 K, suggesting the melting of charge order by pressure. Interestingly, the low-temperature metallic region shrinks gradually upon further increasing pressure and disappears completely at P>7 GPa, which indicates that the charge carriers in Pb3Rh7O15 undergo a reentrant localization under higher pressures. We have constructed a temperature-pressure phase diagram for Pb3Rh7O15 and compared to that of Fe3O4, showing an archetype Verwey transition.
  • Article Text

  • [1]
    Mott N 1984 Rep. Prog Phys. 47 909 doi: 10.1088/0034-4885/47/8/001

    CrossRef Google Scholar

    [2]
    Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039 doi: 10.1103/RevModPhys.70.1039

    CrossRef Google Scholar

    [3]
    Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1 doi: 10.1016/S0370-15730000121-6

    CrossRef Google Scholar

    [4]
    Salkola M I, Emery V J and Kivelson S A 1996 Phys. Rev. Lett. 77 155 doi: 10.1103/PhysRevLett.77.155

    CrossRef Google Scholar

    [5]
    Mizoguchi H, Ramirez A P, Siegrist T, Zakharov L N, Sleight A W and Subramanian M A 2009 Chem. Mater. 21 2300 doi: 10.1021/cm900697s

    CrossRef Google Scholar

    [6]
    Verwey E J W 1939 Nature 144 327 doi: 10.1038/144327b0

    CrossRef Google Scholar

    [7]
    Wright J P, Attfield J P and Radaelli P G 2001 Phys. Rev. Lett. 87 266401 doi: 10.1103/PhysRevLett.87.266401

    CrossRef Google Scholar

    [8]
    Mori N, Todo S, Takeshita N, Mori T and Akishige Y 2002 Physica B 312-313 686 doi: 10.1016/S0921-45260101525-3

    CrossRef Google Scholar

    [9]
    Uwatoko Y, Matsubayashi K, Matsumoto T, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M and Kagi H 2008 Rev. High Press. Sci. Technol. 18 230 doi: 10.4131/jshpreview.18.230

    CrossRef Google Scholar

    [10]
    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H and Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907 doi: 10.1063/1.4896473

    CrossRef Google Scholar

    [11]
    Walz F 2002 J. Phys.: Condens. Matter 14 R285 doi: 10.1088/0953-8984/14/12/203

    CrossRef Google Scholar

    [12]
    Muramatsu T, Gasparov L V, Berger H, Hemley R J and Struzhkin V V 2016 J. Appl. Phys. 119 135903 doi: 10.1063/1.4945388

    CrossRef Google Scholar

  • Related Articles

    [1]K. Tanaka, GAO Xiang, JIE Yin-Xian, R. Sakamoto, K. Toi. Density Modulation Experiments on HT-7 Tokamak [J]. Chin. Phys. Lett., 2004, 21(12): 2458-2460.
    [2]DONG Li-Fang, ZHANG Qing-Li, WANG Long. Conditional Analysis and Biorthogonal Decomposition of PlasmaTurbulence in the CT-6B Tokamak [J]. Chin. Phys. Lett., 2002, 19(12): 1838-1840.
    [3]KHORSHID Pejman, WANG Long, YANGXuan-Zong, FENG Chun-Hua, ZHANG Peng-Yun, QI Xia-Zhi, ROUHANI Shahriar, RAHIMITABAR M. Reza, AGHAMIR M.Farzin, GHORANNEVISS Mahmud, HANTEZADEH M. Reza. Magnetohydrodynamic Activity During Limiter Biasing on the CT-6B Tokamak [J]. Chin. Phys. Lett., 2001, 18(3): 393-395.
    [4]WANG Gui-ding, YANG Xuan-zong, FENG Chun-hua, JIANG Di-ming, QI Xia-zhi. On the Role of Neutral Particles on Edge Turbulence in the CT-6B Tokamak [J]. Chin. Phys. Lett., 1998, 15(7): 510-512.
    [5]ZHOU Bao-suo, YANG Xuan-zong, WANG Long, FENG Chun-hua, JIANG Di-ming, QI Xia-zhi. Measurement of Plasma Rotation Velocities with Limiter Biasing on the CT-6B Tokamak [J]. Chin. Phys. Lett., 1997, 14(8): 597-600.
    [6]YANG Xuanzong, ZHENG Shaobai, JIANG Diming, HAN Gonghe, FENG Chunhua, QI Xiazhi, WANG Wenshu, LI Wenlai, LI Zanliang, DONG Lifang. Preliminary Experimental Results of ac Operation in the CT-6B Tokamak [J]. Chin. Phys. Lett., 1995, 12(6): 362-365.
    [7]HAN Gonghe, QI Xiazhi, WANG Wenshu, ZHENG Shaobai, LIU Mahe. A FULL CURRENT AC-MODULATION EXPERIMENT IN CT-6B TOKAMAK [J]. Chin. Phys. Lett., 1990, 7(10): 449-452.
    [8]CHEN Yanping. A POSSIBLE HEATING MECHANISM AT DOWN-SHIFTED CYCLOTRON FREQUENCY IN THE CT-6B TOKAMAK [J]. Chin. Phys. Lett., 1990, 7(4): 177-180.
    [9]LUO Yaoquan, WANG Long, YANG Size, QI Xiazhi, LI Zanliang, WANG Wenshu, LI Wenlai, WU Xiaowen, ZHAO Hua. ELECTRON CYCLOTRON RESONANCE HEATING ON CT-6B TOKAMAK [J]. Chin. Phys. Lett., 1988, 5(8): 345-348.
    [10]LIU Min, WANG Long, LIN Ruiyan. SIMULATION OF THE RADIAL TRANSPORT IN CT-6B TOKAMAK DURING GAS PUFFING [J]. Chin. Phys. Lett., 1987, 4(3): 121-124.
  • Other Related Supplements

Catalog

    Article views (56) PDF downloads (411) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return