Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca^2+ Oscillations
-
Abstract
Some new elements are introduced into a mathematical model of intracellular calcium oscillations, which make it particularly suitable for the study of bifurcation. In addition to generating regular oscillations, such a modified model can be used to reproduce the burst discharges similar to those recorded in experiments and to describe two new types of oscillatory phenomena. By means of a fast/slow dynamical analysis, we explore the bifurcation and transition mechanisms associated with two types of bursters due to changes in the interaction of two slow variables with different timescales.
Article Text
-
-
-
About This Article
Cite this article:
Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 080501. DOI: 10.1088/0256-307X/34/8/080501
Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 080501. DOI: 10.1088/0256-307X/34/8/080501
|
Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 080501. DOI: 10.1088/0256-307X/34/8/080501
Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 080501. DOI: 10.1088/0256-307X/34/8/080501
|