A Realization of the W_1+\infty Algebra and Its n-Algebra
-
Abstract
We consider a realization of the W_1+\infty algebra and investigate its n-algebra, which is different from the n-algebra of Zhang et al. 2016 arXiv:1606.07570v2 It is found that the generators W_m^s with any fixed superindex s\geqslant 1 yield the null sub-2s-algebra. The nontrivial sub-4-algebra and Virasoro–Witt 3-algebra are presented. Moreover, we extend the generators to the multi-variables case. These generators also yield the W_1+\infty algebra and null n-algebras.
Article Text
-
-
-
About This Article
Cite this article:
Chun-Hong Zhang, Rui Wang, Ke Wu, Wei-Zhong Zhao. A Realization of the $W_{1+\infty}$ Algebra and Its $n$-Algebra[J]. Chin. Phys. Lett., 2017, 34(8): 080202. DOI: 10.1088/0256-307X/34/8/080202
Chun-Hong Zhang, Rui Wang, Ke Wu, Wei-Zhong Zhao. A Realization of the $W_{1+\infty}$ Algebra and Its $n$-Algebra[J]. Chin. Phys. Lett., 2017, 34(8): 080202. DOI: 10.1088/0256-307X/34/8/080202
|
Chun-Hong Zhang, Rui Wang, Ke Wu, Wei-Zhong Zhao. A Realization of the $W_{1+\infty}$ Algebra and Its $n$-Algebra[J]. Chin. Phys. Lett., 2017, 34(8): 080202. DOI: 10.1088/0256-307X/34/8/080202
Chun-Hong Zhang, Rui Wang, Ke Wu, Wei-Zhong Zhao. A Realization of the $W_{1+\infty}$ Algebra and Its $n$-Algebra[J]. Chin. Phys. Lett., 2017, 34(8): 080202. DOI: 10.1088/0256-307X/34/8/080202
|