Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb
-
Abstract
We report an optical spectroscopy study on LaSb, a compound recently identified to exhibit extremely large magnetoresistance. Our optical measurement indicates that the material has a low carrier density. More interestingly, the study reveals that the plasma frequency increases with decreasing temperature. This phenomenon suggests either an increase of the conducting carrier density or/and a decrease of the effective mass of carriers with decreasing temperature. We attribute it primarily to the latter effect. Two possible scenarios on its physical origin are examined and discussed. The study offers new insight into the electronic structure of this compound.
Article Text
-
-
-
About This Article
Cite this article:
Wen-Jing Ban, Wen-Ting Guo, Jian-Lin Luo, Nan-Lin Wang. Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb[J]. Chin. Phys. Lett., 2017, 34(7): 077804. DOI: 10.1088/0256-307X/34/7/077804
Wen-Jing Ban, Wen-Ting Guo, Jian-Lin Luo, Nan-Lin Wang. Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb[J]. Chin. Phys. Lett., 2017, 34(7): 077804. DOI: 10.1088/0256-307X/34/7/077804
|
Wen-Jing Ban, Wen-Ting Guo, Jian-Lin Luo, Nan-Lin Wang. Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb[J]. Chin. Phys. Lett., 2017, 34(7): 077804. DOI: 10.1088/0256-307X/34/7/077804
Wen-Jing Ban, Wen-Ting Guo, Jian-Lin Luo, Nan-Lin Wang. Observation of Temperature Induced Plasma Frequency Shift in an Extremely Large Magnetoresistance Compound LaSb[J]. Chin. Phys. Lett., 2017, 34(7): 077804. DOI: 10.1088/0256-307X/34/7/077804
|