State Preparation in a Cold Atom Clock by Optical Pumping

Funds: Supported by the Fund from the Ministry of Science and Technology of China under Grant No 2013YQ09094304, and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
  • Received Date: April 19, 2017
  • Published Date: June 30, 2017
  • We implement optical pumping to prepare cold atoms in our prototype of the 87Rb space cold atom clock, which operates in the one-way mode. Several modifications are made on our previous physical and optical system. The effective atomic signal in the top detection zone is increased to 2.5 times with 87% pumping efficiency. The temperature of the cold atom cloud is increased by 1.4 μK. We study the dependences of the effective signal gain and pumping efficiency on the pumping laser intensity and detuning. The effects of σ transition are discussed. This technique may be used in the future space cold atom clocks.
  • Article Text

  • [1]
    Riehle F 2006 Frequency Standards: Basics and Applications John Wiley & Sons chap 7 p 223

    Google Scholar

    [2]
    Wynands R and Weyers S 2005 Metrologia 42 S64 doi: 10.1088/0026-1394/42/3/S08

    CrossRef Google Scholar

    [3]
    Tremblay P and Jacques C 1990 Phys. Rev. A 41 4989 doi: 10.1103/PhysRevA.41.4989

    CrossRef Google Scholar

    [4]
    Avila G et al. 1987 Phys. Rev. A 36 3719 doi: 10.1103/PhysRevA.36.3719

    CrossRef Google Scholar

    [5]
    Ohshima S, Nakadan Y S and Koga Y 1988 IEEE Trans. Instrum. Meas. 37 409 doi: 10.1109/19.7465

    CrossRef Google Scholar

    [6]
    Di Domenico G et al. 2010 Phys. Rev. A 82 053417 doi: 10.1103/PhysRevA.82.053417

    CrossRef Google Scholar

    [7]
    Chalupczak W and Szymaniec K 2005 Phys. Rev. A 71 053410 doi: 10.1103/PhysRevA.71.053410

    CrossRef Google Scholar

    [8]
    Szymaniec K et al. 2013 Appl. Phys. B 111 527 doi: 10.1007/s00340-013-5368-7

    CrossRef Google Scholar

    [9]
    Szymaniec K and Park S E 2011 IEEE Trans. Instrum. Meas. 60 2475 doi: 10.1109/TIM.2010.2088430

    CrossRef Google Scholar

    [10]
    Takamizawa A et al. 2015 IEEE Trans. Instrum. Meas. 64 2504 doi: 10.1109/TIM.2015.2415015

    CrossRef Google Scholar

    [11]
    Fang F et al. 2015 Frequency Control Symposium & the European Frequency and Time Forum FCS, 2015 Joint Conference of the IEEE International Denver, USA 12–16 April 2015 p 492

    Google Scholar

    [12]
    Ren W et al. 2016 Chin. Phys. B 25 060601 doi: 10.1088/1674-1056/25/6/060601

    CrossRef Google Scholar

    [13]
    Qu Q Z et al. 2015 Chin. J. Laser B 42 0902006 in Chinese doi: 10.3788/CJL201542.0902006

    CrossRef Google Scholar

    [14]
    Lü D S et al. 2011 Chin. Phys. Lett. 28 063201 doi: 10.1088/0256-307X/28/6/063201

    CrossRef Google Scholar

    [15]
    Wang B et al. 2011 Chin. Phys. Lett. 28 063701 doi: 10.1088/0256-307X/28/6/063701

    CrossRef Google Scholar

    [16]
    Qu Q Z et al. 2015 Chin. Opt. Lett. 13 061405 doi: 10.3788/COL201513.061405

    CrossRef Google Scholar

    [17]
    Zhang S S et al. 2016 Chin. Phys. B 25 114203 doi: 10.1088/1674-1056/25/11/114203

    CrossRef Google Scholar

    [18]
    Wang L R et al. 2015 Chin. Phys. B 24 063201 doi: 10.1088/1674-1056/24/6/063201

    CrossRef Google Scholar

    [19]
    Wang P J et al. 2011 Chin. Phys. B 20 016701 doi: 10.1088/1674-1056/20/1/016701

    CrossRef Google Scholar

    [20]
    Théobald G et al. 1989 Opt. Commun. 71 256 doi: 10.1016/0030-40188990004-7

    CrossRef Google Scholar

    [21]
    Dalton B J, McDuff R and Knight P L 1985 Opt. Acta 32 61 doi: 10.1080/713821645

    CrossRef Google Scholar

  • Related Articles

    [1]SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium [J]. Chin. Phys. Lett., 2012, 29(7): 074213. doi: 10.1088/0256-307X/29/7/074213
    [2]WANG Xiao-Long, CHENG Bing, WU Bin, WANG Zhao-Ying, LIN Qiang. A Simplified Cold Atom Source for 3-D MOT Loading [J]. Chin. Phys. Lett., 2011, 28(5): 053701. doi: 10.1088/0256-307X/28/5/053701
    [3]ZHOU Lin, XIONG Zong-Yuan, YANG Wei, TANG Biao, PENG Wen-Cui, WANG Yi-Bo, XU Peng, WANG Jin, ZHAN Ming-Sheng. Measurement of Local Gravity via a Cold Atom Interferometer [J]. Chin. Phys. Lett., 2011, 28(1): 013701. doi: 10.1088/0256-307X/28/1/013701
    [4]ZHOU Shu-Yu, XIA Tian, XU Zhen, WANG Yu-Zhu. Experimental Properties of Optical Phase Conjugation in Cold Atoms in a Magneto-Optical Trap [J]. Chin. Phys. Lett., 2010, 27(1): 014211. doi: 10.1088/0256-307X/27/1/014211
    [5]ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency [J]. Chin. Phys. Lett., 2009, 26(9): 090601. doi: 10.1088/0256-307X/26/9/090601
    [6]LI Ke, WANG Xiao-Rui, HE Ling-Xiang, ZHAN Ming-Sheng, LU Bao-Long. Enhancement of Transfer Efficiency of Cold Atoms Using an Optical Guiding Laser Beam [J]. Chin. Phys. Lett., 2007, 24(9): 2562-2565.
    [7]XIANG Shao-Hua, SONG Ke-Hui. Preparation and Decoherence of Two-Atom Entangled States in a Dissipative Cavity [J]. Chin. Phys. Lett., 2006, 23(4): 768-771.
    [8]BIAN Feng-Gang, WEI Rong, JIANG Hai-Feng, WANG Yu-Zhu. A Movable-Cavity Cold Atom Space Clock [J]. Chin. Phys. Lett., 2005, 22(7): 1645-1648.
    [9]WEI Rong, QIAN Yong, ZHANG Yu, WANG Yu-Zhu. Proposal of a Novel Compact Cold Atomic Fountain Clock [J]. Chin. Phys. Lett., 2004, 21(1): 57-60.
    [10]HE Xiao-Ling, DU Si-De, CHEN Hao, LU Jing. Coherent Control of Transmission Probability of a Cold Atom Through Microcavity Potentials [J]. Chin. Phys. Lett., 2003, 20(4): 456-458.

Catalog

    Article views (247) PDF downloads (981) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return