Mechanisms of Spin-Dependent Heat Generation in Spin Valves
-
Abstract
The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. Reformulating the heat generation rate, we find alternative current-force pairs without cross effects, which enable us to interpret the product of each pair as a distinct mechanism of heat generation. The results show that the spin-dependent part of the heat generation includes two terms. One is proportional to the square of the spin accumulation and arises from the spin relaxation. However, the other is proportional to the square of the spin-accumulation gradient and should be attributed to another mechanism, the spin diffusion. We illustrate the characteristics of the two mechanisms in a typical spin valve with a finite nonmagnetic spacer layer.
Article Text
-
-
-
About This Article
Cite this article:
Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 067202. DOI: 10.1088/0256-307X/34/6/067202
Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 067202. DOI: 10.1088/0256-307X/34/6/067202
|
Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 067202. DOI: 10.1088/0256-307X/34/6/067202
Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 067202. DOI: 10.1088/0256-307X/34/6/067202
|