Stability of Dirac Equation in Four-Dimensional Gravity
-
Abstract
We introduce the Dirac equation in four-dimensional gravity which is a generally covariant form. We choose the suitable variable and solve the corresponding equation. To solve such equation and to obtain the corresponding bispinor, we employ the factorization method which introduces the associated Laguerre polynomial. The associated Laguerre polynomials help us to write the Dirac equation of four-dimensional gravity in the form of the shape invariance equation. Thus we write the shape invariance condition with respect to the secondary quantum number. Finally, we obtain the spinor wave function and achieve the corresponding stability of condition for the four-dimensional gravity system.
Article Text
-
-
-
About This Article
Cite this article:
F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 060301. DOI: 10.1088/0256-307X/34/6/060301
F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 060301. DOI: 10.1088/0256-307X/34/6/060301
|
F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 060301. DOI: 10.1088/0256-307X/34/6/060301
F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 060301. DOI: 10.1088/0256-307X/34/6/060301
|