Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate
-
Abstract
The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to calculate the capillary force. The results show excellent agreement with the Young–Laplace equation method. An experimental setup is built to measure the capillary force. The experimental results indicate that the simulation results agree well with the measured forces at large separation distances, while some deviation may occur due to the transition from the advancing contact angle to the receding one at small distances. It is also found that the measured rupture distance is slightly larger than the simulation value due to the effect of the viscous interaction inside the liquid bridge.
Article Text
-
-
-
About This Article
Cite this article:
Le-Feng Wang, Ben-Song Huang, Yuan-Zhe He, Wei-Bin Rong, Li-Ning Sun. Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate[J]. Chin. Phys. Lett., 2017, 34(5): 056801. DOI: 10.1088/0256-307X/34/5/056801
Le-Feng Wang, Ben-Song Huang, Yuan-Zhe He, Wei-Bin Rong, Li-Ning Sun. Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate[J]. Chin. Phys. Lett., 2017, 34(5): 056801. DOI: 10.1088/0256-307X/34/5/056801
|
Le-Feng Wang, Ben-Song Huang, Yuan-Zhe He, Wei-Bin Rong, Li-Ning Sun. Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate[J]. Chin. Phys. Lett., 2017, 34(5): 056801. DOI: 10.1088/0256-307X/34/5/056801
Le-Feng Wang, Ben-Song Huang, Yuan-Zhe He, Wei-Bin Rong, Li-Ning Sun. Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate[J]. Chin. Phys. Lett., 2017, 34(5): 056801. DOI: 10.1088/0256-307X/34/5/056801
|