Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization
-
Abstract
We investigate the critical behavior and the duality property of the ferromagnetic q-state clock model on the square lattice based on the tensor-network formalism. From the entanglement spectra of local tensors defined in the original and dual lattices, we obtain the exact self-dual points for the model with q \leq 5 and approximate self-dual points for q \geq 6. We calculate accurately the lower and upper critical temperatures for the six-state clock model from the fixed-point tensors determined using the higher-order tensor renormalization group method and compare with other numerical results.
Article Text
-
-
-
About This Article
Cite this article:
Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 050503. DOI: 10.1088/0256-307X/34/5/050503
Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 050503. DOI: 10.1088/0256-307X/34/5/050503
|
Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 050503. DOI: 10.1088/0256-307X/34/5/050503
Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 050503. DOI: 10.1088/0256-307X/34/5/050503
|