Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes
-
Abstract
Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe-phthalocyanine dimers with two armchair single-walled carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.
Article Text
-
-
-
About This Article
Cite this article:
Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 047302. DOI: 10.1088/0256-307X/34/4/047302
Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 047302. DOI: 10.1088/0256-307X/34/4/047302
|
Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 047302. DOI: 10.1088/0256-307X/34/4/047302
Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 047302. DOI: 10.1088/0256-307X/34/4/047302
|