-
Abstract
Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we theoretically predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100 μm, the calculations reveal that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 μm, this spectral gap is related to a forbidden band of the sound wave. In the experiment, we observe the predicted gap in the frequency spectrum in soda water. However, in tap water, no spectral gap is present because the bubbles are much smaller than 100 μm. -
-
References
[1] Frenzel H and Schultes H 1934 Z. Phys. Chem. Abt. B 27B 421[2] Ohl C D, Kurz T, Geisler R, Lindau O and Lauterborn W 1999 Philos. Trans. R. Soc.A 357 269 doi: 10.1098/rsta.1999.0327[3] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 doi: 10.1103/PhysRevLett.58.2059[4] Liu Z Y, Zhang X X, Mao Y W et al. 2000 Science 289 1734 doi: 10.1126/science.289.5485.1734[5] Minnaert M 1933 Philos. Mag. 16 235 doi: 10.1080/14786443309462277[6] Ye Z and Alvarez A 1998 Phys. Rev. Lett. 80 3503 doi: 10.1103/PhysRevLett.80.3503[7] Kafesaki M, Penciu R S and Economou E N 2000 Phys. Rev. Lett. 84 6050 doi: 10.1103/PhysRevLett.84.6050[8] Liang B and Cheng J C 2007 Phys. Rev. E 75 16605 doi: 10.1103/PhysRevE.75.016605[9] An Y 2012 Phys. Rev. E 85 016305 doi: 10.1103/PhysRevE.85.016305[10] Zabolotskaya E A and Soluyan S I 1973 Sov. Phys. Acoust. 18 396[11] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628 doi: 10.1121/1.384720 -
Related Articles
[1] Yi-Long Yang, Peng-Wei Zhao. Reconciling light nuclei and nuclear matter: relativistic ab initio calculations [J]. Chin. Phys. Lett., 2025, 42(5): 051201. doi: 10.1088/0256-307X/42/5/051201 [2] WANG Yu-Hua, LI Hui-Qing, LU Jian-Duo, WANG Ru-Wu. Optical Limiting Properties of Ag-Cu Metal Alloy Nanoparticles Analysis by using MATLAB [J]. Chin. Phys. Lett., 2011, 28(11): 116101. doi: 10.1088/0256-307X/28/11/116101 [3] Sardar Sikandar Hayat, I. Ahmad, M. Arshad Choudhry. Diffusion of Six-Atom Cu Islands on Cu(111) and Ag(111) [J]. Chin. Phys. Lett., 2011, 28(5): 053601. doi: 10.1088/0256-307X/28/5/053601 [4] LIAO Bin, WU Xian-Ying, LIANG Hong, ZHANG Xu, LIU An-Dong. Preparation and Photocurrent Performance of Highly Ordered Titania Nanotube Implanted with Ag/Cu Metal Ions [J]. Chin. Phys. Lett., 2010, 27(7): 077103. doi: 10.1088/0256-307X/27/7/077103 [5] YANG Ning-Xuan, DONG Chen-Zhong, JIANG Jun. Relativistic Distorted-Wave Collision Strengths of Ni-, Cu- and Zn-like Au Ions [J]. Chin. Phys. Lett., 2009, 26(5): 053401. doi: 10.1088/0256-307X/26/5/053401 [6] ZHOU Li, YU Xue-Feng, FU Xiao-Feng, HAO Zhong-Hua, LI Kai-Yang. Surface Plasmon Resonance and Field Enhancement of Au/Ag Alloyed Hollow Nanoshells [J]. Chin. Phys. Lett., 2008, 25(5): 1776-1779. [7] HU Biao, GONG Xiu-Fang, NING Xi-Jing. Dynamical Behaviour of Ag and Cu Double-Layer Islands on fcc (111) Surfaces [J]. Chin. Phys. Lett., 2005, 22(2): 427-430. [8] DUAN Su-Qing, ZHAO Xian-Geng, LIU Shao-Jun, MA Ben-Kun. Effect of the Vibrational Modes on the Ag-Cu Phase Diagram [J]. Chin. Phys. Lett., 2000, 17(7): 522-524. [9] ZHENG Keqin, SHU Qiqing, CHEN Xinyong. Role of Residual O2 in Fabrication of A1-MgF2-Au(Cu) Thin Film Devices [J]. Chin. Phys. Lett., 1994, 11(6): 379-382. [10] HUANG Xiaojing, LU Xiting, JIN Changwen, ZHOU Chengfang, YE Yanlin, XIA Zonghuang, LIU Hongtao, JIANG Dongxing. Stopping Power of Au and Ag for He Ions [J]. Chin. Phys. Lett., 1993, 10(4): 205-208.