Localization in an Acoustic Cavitation Cloud

Funds: Supported by the National Natural Science Foundation of China under Grant No 11334005, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120002110031, and the Tsinghua Fudaoyuan Foreigh Visiting Support Project.
  • Received Date: December 06, 2016
  • Published Date: February 28, 2017
  • Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we theoretically predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100 μm, the calculations reveal that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 μm, this spectral gap is related to a forbidden band of the sound wave. In the experiment, we observe the predicted gap in the frequency spectrum in soda water. However, in tap water, no spectral gap is present because the bubbles are much smaller than 100 μm.
  • Article Text

  • [1]
    Frenzel H and Schultes H 1934 Z. Phys. Chem. Abt. B 27B 421

    Google Scholar

    [2]
    Ohl C D, Kurz T, Geisler R, Lindau O and Lauterborn W 1999 Philos. Trans. R. Soc.A 357 269 doi: 10.1098/rsta.1999.0327

    CrossRef Google Scholar

    [3]
    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 doi: 10.1103/PhysRevLett.58.2059

    CrossRef Google Scholar

    [4]
    Liu Z Y, Zhang X X, Mao Y W et al. 2000 Science 289 1734 doi: 10.1126/science.289.5485.1734

    CrossRef Google Scholar

    [5]
    Minnaert M 1933 Philos. Mag. 16 235 doi: 10.1080/14786443309462277

    CrossRef Google Scholar

    [6]
    Ye Z and Alvarez A 1998 Phys. Rev. Lett. 80 3503 doi: 10.1103/PhysRevLett.80.3503

    CrossRef Google Scholar

    [7]
    Kafesaki M, Penciu R S and Economou E N 2000 Phys. Rev. Lett. 84 6050 doi: 10.1103/PhysRevLett.84.6050

    CrossRef Google Scholar

    [8]
    Liang B and Cheng J C 2007 Phys. Rev. E 75 16605 doi: 10.1103/PhysRevE.75.016605

    CrossRef Google Scholar

    [9]
    An Y 2012 Phys. Rev. E 85 016305 doi: 10.1103/PhysRevE.85.016305

    CrossRef Google Scholar

    [10]
    Zabolotskaya E A and Soluyan S I 1973 Sov. Phys. Acoust. 18 396

    Google Scholar

    [11]
    Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628 doi: 10.1121/1.384720

    CrossRef Google Scholar

  • Related Articles

    [1]Yi-Long Yang, Peng-Wei Zhao. Reconciling light nuclei and nuclear matter: relativistic ab initio calculations [J]. Chin. Phys. Lett., 2025, 42(5): 051201. doi: 10.1088/0256-307X/42/5/051201
    [2]WANG Yu-Hua, LI Hui-Qing, LU Jian-Duo, WANG Ru-Wu. Optical Limiting Properties of Ag-Cu Metal Alloy Nanoparticles Analysis by using MATLAB [J]. Chin. Phys. Lett., 2011, 28(11): 116101. doi: 10.1088/0256-307X/28/11/116101
    [3]Sardar Sikandar Hayat, I. Ahmad, M. Arshad Choudhry. Diffusion of Six-Atom Cu Islands on Cu(111) and Ag(111) [J]. Chin. Phys. Lett., 2011, 28(5): 053601. doi: 10.1088/0256-307X/28/5/053601
    [4]LIAO Bin, WU Xian-Ying, LIANG Hong, ZHANG Xu, LIU An-Dong. Preparation and Photocurrent Performance of Highly Ordered Titania Nanotube Implanted with Ag/Cu Metal Ions [J]. Chin. Phys. Lett., 2010, 27(7): 077103. doi: 10.1088/0256-307X/27/7/077103
    [5]YANG Ning-Xuan, DONG Chen-Zhong, JIANG Jun. Relativistic Distorted-Wave Collision Strengths of Ni-, Cu- and Zn-like Au Ions [J]. Chin. Phys. Lett., 2009, 26(5): 053401. doi: 10.1088/0256-307X/26/5/053401
    [6]ZHOU Li, YU Xue-Feng, FU Xiao-Feng, HAO Zhong-Hua, LI Kai-Yang. Surface Plasmon Resonance and Field Enhancement of Au/Ag Alloyed Hollow Nanoshells [J]. Chin. Phys. Lett., 2008, 25(5): 1776-1779.
    [7]HU Biao, GONG Xiu-Fang, NING Xi-Jing. Dynamical Behaviour of Ag and Cu Double-Layer Islands on fcc (111) Surfaces [J]. Chin. Phys. Lett., 2005, 22(2): 427-430.
    [8]DUAN Su-Qing, ZHAO Xian-Geng, LIU Shao-Jun, MA Ben-Kun. Effect of the Vibrational Modes on the Ag-Cu Phase Diagram [J]. Chin. Phys. Lett., 2000, 17(7): 522-524.
    [9]ZHENG Keqin, SHU Qiqing, CHEN Xinyong. Role of Residual O2 in Fabrication of A1-MgF2-Au(Cu) Thin Film Devices [J]. Chin. Phys. Lett., 1994, 11(6): 379-382.
    [10]HUANG Xiaojing, LU Xiting, JIN Changwen, ZHOU Chengfang, YE Yanlin, XIA Zonghuang, LIU Hongtao, JIANG Dongxing. Stopping Power of Au and Ag for He Ions [J]. Chin. Phys. Lett., 1993, 10(4): 205-208.

Catalog

    Article views (4) PDF downloads (556) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return