A High-Pulse-Energy High-Beam-Quality Tunable Ti:Sapphire Laser Using a Prism-Dispersion Cavity

  • A high-pulse-energy high-beam-quality tunable Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. Using a fused-silica prism as the dispersion element, a tuning range of 740–855 nm is obtained. At an incident pump energy of 774 mJ, the maximum output energy of 104 mJ at 790 nm with a pulse width of 100 μs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, it is the highest pulse energy at 790 nm with pulse width of hundred micro-seconds for an all-solid-state laser. The linewidth of output is 0.5 nm, and the beam quality factor M^2 is 1.16. The high-pulse-energy high-beam-quality tunable Ti:sapphire laser in the range of 740–855 nm can be used to establish a more accurate and consistent absolute scale of second-order optical-nonlinear coefficients for KBe_2BO_3F_2 measured in a wider wavelength range and to assess Miller's rule quantitatively.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return