Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems
-
Abstract
To shed light on the subgrid-scale (SGS) modeling methodology of nonlinear systems such as the Navier–Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.
Article Text
-
-
-
About This Article
Cite this article:
Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 030501. DOI: 10.1088/0256-307X/34/3/030501
Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 030501. DOI: 10.1088/0256-307X/34/3/030501
|
Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 030501. DOI: 10.1088/0256-307X/34/3/030501
Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 030501. DOI: 10.1088/0256-307X/34/3/030501
|