Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak
-
Abstract
The characteristics of the energy transfer and nonlinear coupling among edge electromagnetic turbulence in thermal quench sub-period of the internal reconnection event (IRE) are studied at the sino-united spherical tokamak device using multiple Langmuir and magnetic probe arrays. The wavelet bispectral analysis and the modified Kim method are applied to investigate linear growth/damping and nonlinear energy transfer rates, along with multi-field turbulence interactions. The results show a multi-field nonlinear energy transfer from electrostatic to magnetic turbulence that results in two-mode coupling in magnetic turbulence, which may play a crucial role to trigger the IRE.
Article Text
-
-
-
About This Article
Cite this article:
Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 025201. DOI: 10.1088/0256-307X/34/2/025201
Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 025201. DOI: 10.1088/0256-307X/34/2/025201
|
Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 025201. DOI: 10.1088/0256-307X/34/2/025201
Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 025201. DOI: 10.1088/0256-307X/34/2/025201
|