Dual-Wavelength Passively Q-Switched Ytterbium-Doped Fiber Laser Based on Aluminum Oxide Nanoparticle Saturable Absorbers
-
Abstract
We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7 nm is observed at threshold pump power of 80 mW. As the pump power is gradually increased from 80 to 300 mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6 μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region. -
-
References
[1] Luo Z Q, Huang Y Z, Weng J, Cheng H H, Lin Z Q, Xu B, Cai Z P and Xu H Y 2013 Opt. Express 21 29516 doi: 10.1364/OE.21.029516[2] Zhao J Q, Wang Y G, Yan P G, Ruan S C, Tsang Y, Zhang G L and Li H Q 2014 Opt. Commun. 312 227 doi: 10.1016/j.optcom.2013.09.038[3] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202 doi: 10.1088/0256-307X/34/4/044202[4] Wang X D, Liu H C, Zhao N, Liu M, Zhu Y F, Xue J P, Luo A P and Xu W C 2015 Opt. Commun. 346 21 doi: 10.1016/j.optcom.2015.02.002[5] Paschotta R, Häring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388 doi: 10.1364/OL.24.000388[6] Ahmad H, Zulkifli A Z, Thambiratnam K and Harun S W 2013 IEEE Photon. J. 5 1501108 doi: 10.1109/JPHOT.2013.2273733[7] Song R, Chen H W, Chen S P, Hou J and Lu Q S 2011 J. Opt. 13 035201 doi: 10.1088/2040-8978/13/3/035201[8] Mohammed D Z and Al-Janabi A H 2016 Laser Phys. 26 115108 doi: 10.1088/1054-660X/26/11/115108[9] Zhao J Q et al. 2012 Chin. Phys. Lett. 29 114206 doi: 10.1088/0256-307X/29/11/114206[10] Tang P, Zhang X, Zhao C, Wang Y, Zhang H, Shen D, Wen S, Tang D and Fan D 2013 IEEE Photon. J. 5 1500707 doi: 10.1109/JPHOT.2013.2250494[11] Schmidt A, Rivier S, Steinmeyer G, Yim J H, Cho W B, Lee S, Rotermund F, Pujol M C, Mateos X, Aguiló M, Díaz F, Petrov V and Griebner U 2008 Opt. Lett. 33 729 doi: 10.1364/OL.33.000729[12] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 doi: 10.1002/adfm.200901007[13] Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2015 Sci. Rep. 4 6346 doi: 10.1038/srep06346[14] Zulkhairi A S, Azzuhri S R, Shaharuddin R A, Jaddoa M F, Salim M A M, Jasim A A and Ahmad H 2017 Laser Phys. 27 055104 doi: 10.1088/1555-6611/aa6587[15] Chi R, Lu K and Chen S 2003 Microwave Opt. Technol. Lett. 36 170 doi: 10.1002/mop.10711[16] Ahmad H, Salim M A M, Soltanian M R K, Azzuhria S R and Harun S W 2015 J. Mod. Opt. 62 1550 doi: 10.1080/09500340.2015.1050471[17] Ahmad H, Salim M A M, Ali Z A, Ismail M F, Thambiratnam K, Latif A A, Nayan N and Harun S W 2016 Chin. Opt. Lett. 14 091403 doi: 10.3788/COL201614.091403[18] Apel O, Mann K and Marowsky G 2000 Appl. Phys. A 71 593 doi: 10.1007/s003390000588[19] Al-Hayali S K M, Mohammed D Z, Khaleel W A and Al-Janabi A H 2017 Appl. Opt. 56 4720 doi: 10.1364/AO.56.004720[20] Ahmad H, Sharbirin A S, Muhamad A, Samion M Z, Reduan S A, Zulkifli A Z and Ismail M F 2017 J. Lightwave Technol. 35 2470 doi: 10.1109/JLT.2017.2684197[21] Wang Z T, Chen Y, Zhao C J, Zhang H and Wen S C 2012 IEEE Photon. J. 4 869 doi: 10.1109/JPHOT.2012.2199102[22] Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692 doi: 10.1364/OE.17.012692[23] Chiu J C, Lan Y F, Chang C M, Chen X Z, Yeh C Y, Lee C K, Lin G R, Lin J J and Cheng W H 2010 Opt. Express 18 3592 doi: 10.1364/OE.18.003592