A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices

  • Received Date: March 26, 2016
  • Published Date: July 24, 2016
  • The combination of spin–orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde–Ferrell (FF) superfluid. However, atom loss and heating related to SOC have impeded the successful observation of FF state until now. In this work, we propose the realization of spin-balanced FF superfluid in a honeycomb lattice without SOC and the Zeeman field. A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving. In our model the ground state is always the FF state, thus the experimental observation has no need of fine tuning. The other advantages of our scheme are its simplicity and feasibility, and thus may open a new route for observing FF superfluids.
  • Article Text

  • Related Articles

    [1]CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2012, 29(6): 060508. doi: 10.1088/0256-307X/29/6/060508
    [2]WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060204. doi: 10.1088/0256-307X/28/6/060204
    [3]CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060202. doi: 10.1088/0256-307X/28/6/060202
    [4]LIANG Zu-Feng, TANG Xiao-Yan. Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation [J]. Chin. Phys. Lett., 2010, 27(3): 030201. doi: 10.1088/0256-307X/27/3/030201
    [5]ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan. N-Soliton Solutions of Non-Isospectral Derivative Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(3): 030202. doi: 10.1088/0256-307X/26/3/030202
    [6]XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
    [7]SU Ting, GENG Xian-Guo, MA Yun-Ling. Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2007, 24(2): 305-307.
    [8]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [9]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [10]LIU Shanliang, WANG Wenzheng, XU Jingzhi. Exact N-Soliton Solutions for the Higher-Order Nonlinear Schrödinger Equation Under Another Condition [J]. Chin. Phys. Lett., 1994, 11(12): 737-740.

Catalog

    Article views (3) PDF downloads (639) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return