Pressure Tuning of Magnetism and Drastic Increment of Thermal Conductivity under Applied Magnetic Field in HgCr_2S_4

  • HgCr_2S_4 is a typical compound manifesting competing ferromagnetic (FM) and antiferromagnetic (AFM) exchanges as well as strong spin–lattice coupling. Here we study these effects by intentionally choosing a combination of magnetization under external hydrostatic pressure and thermal conductivity at various magnetic fields. Upon applying pressure up to 10 kbar at 1 kOe, while the magnitude of magnetization reduces progressively, the AFM ordering temperature T_\rm N enhances concomitantly at a rate of about 1.5 K/kbar. Strikingly, at 10 kOe the field polarized FM state is found to be driven readily back to an AFM one even at only 5 kbar. In addition, the thermal conductivity exhibits drastic increments at various fields in the temperature range with strong spin fluctuations, reaching about 30% at 50 kOe. Consequently, the results give new experimental evidence of spin–lattice coupling. Apart from the colossal magnetocapacitance and colossal magnetoresistance reported previously, the findings here may enable new promising functionalities for potential applications.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return