Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials
-
Abstract
We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlattices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged wave number. The magnetic and electric potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.
Article Text
-
-
-
About This Article
Cite this article:
Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(5): 057202. DOI: 10.1088/0256-307X/33/5/057202
Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(5): 057202. DOI: 10.1088/0256-307X/33/5/057202
|
Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(5): 057202. DOI: 10.1088/0256-307X/33/5/057202
Yi-Heng Yin, Yan-Xiong Niu, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang. Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials[J]. Chin. Phys. Lett., 2016, 33(5): 057202. DOI: 10.1088/0256-307X/33/5/057202
|