Detecting Spin Bias with Circularly Polarized Light
-
Abstract
We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.
Article Text
-
-
-
About This Article
Cite this article:
Feng Liang, Ben-Ling Gao, Yu Gu, Cheng Yang. Detecting Spin Bias with Circularly Polarized Light[J]. Chin. Phys. Lett., 2016, 33(4): 047201. DOI: 10.1088/0256-307X/33/4/047201
Feng Liang, Ben-Ling Gao, Yu Gu, Cheng Yang. Detecting Spin Bias with Circularly Polarized Light[J]. Chin. Phys. Lett., 2016, 33(4): 047201. DOI: 10.1088/0256-307X/33/4/047201
|
Feng Liang, Ben-Ling Gao, Yu Gu, Cheng Yang. Detecting Spin Bias with Circularly Polarized Light[J]. Chin. Phys. Lett., 2016, 33(4): 047201. DOI: 10.1088/0256-307X/33/4/047201
Feng Liang, Ben-Ling Gao, Yu Gu, Cheng Yang. Detecting Spin Bias with Circularly Polarized Light[J]. Chin. Phys. Lett., 2016, 33(4): 047201. DOI: 10.1088/0256-307X/33/4/047201
|