Generalised Error Functions from the Kerr Metric
-
Abstract
Motivated by the effort to understand the mathematical structure underlying the Teukolsky equations in a Kerr metric background, a homogeneous integral equation related to the prolate spheroidal function is studied. From the consideration of the Fredholm determinant of the integral equation, a family of generalized error function is defined, with which the Fredholm determinant of the sinc kernel is also evaluated. An analytic solution of a special case of the fifth Painlevé transcendent is then worked out explicitly.
Article Text
-
-
-
About This Article
Cite this article:
Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(3): 030401. DOI: 10.1088/0256-307X/33/3/030401
Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(3): 030401. DOI: 10.1088/0256-307X/33/3/030401
|
Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(3): 030401. DOI: 10.1088/0256-307X/33/3/030401
Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(3): 030401. DOI: 10.1088/0256-307X/33/3/030401
|