Improving Plasma Confinement by Controlling Hard X-Ray
-
Abstract
Since runaway electrons and magnetohydrodynamics activity can contribute to serious damage and energy losses in tokamaks, the effect of an external electric field on runaway electrons and hard x-ray spectra is investigated. Parameters such as the plasma current, the hard x-ray photons count and the mean energy of runaway electrons are measured. Positive and negative voltages of 300 V are applied at 10 ms after the plasma initiation (while the plasma is forming), at 15 ms (while the plasma is stable) and at 20 ms (while the plasma is fading away) to attain the most effective time of applying the external electric field. The number of hard x-ray photons has the most changes in the range of 0–200 keV when the external electric fields are applied. Also in the duration of 20–30 ms of plasma the greatest number of hard x-ray spectra is detected. When the external electric fields are applied, the mean energy of runaway electrons reduces significantly, especially at 15 ms (while the plasma is stable).
Article Text
-
-
-
About This Article
Cite this article:
N. Hasanv, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 115202. DOI: 10.1088/0256-307X/33/11/115202
N. Hasanv, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 115202. DOI: 10.1088/0256-307X/33/11/115202
|
N. Hasanv, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 115202. DOI: 10.1088/0256-307X/33/11/115202
N. Hasanv, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 115202. DOI: 10.1088/0256-307X/33/11/115202
|