On Time-Fractional Cylindrical Nonlinear Equation

Funds: Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under Grant No 2016/01/6239.
  • Received Date: June 15, 2016
  • Published Date: October 31, 2016
  • Properties of cylindrical electron acoustic solitons are studied in vortex plasmas. The modified cylindrical Korteweg–de Vries (KdV) equation is acquired and converted into the time fractional cylindrical modified KdV equation by Agrawal's analysis. Via the Adomian decomposition method, a cylindrical soliton solution to the equation is obtained. The cylindrical time fractional effect on the wave properties is investigated. Further, the increase of the fractional order of time α and hot to trapped electrons temperature β are minimized in both solitary width and amplitude. These influences on the structures of the soliton may be an alternative to the use of higher order perturbation analysis.
  • Article Text

  • [1]
    Dubouloz N, Pottelette R, Malingre M and Treumann R A 1991 Geophys. Res. Lett. 18 155 doi: 10.1029/90GL02677

    CrossRef Google Scholar

    [2]
    Singh S V and Lakhina G S 2001 Planet. Space Sci. 49 107 doi: 10.1016/S0032-06330000126-4

    CrossRef Google Scholar

    [3]
    Elwakil S A, Zahran M A and El-Shewy E K 2007 Phys. Scr. 75 803 doi: 10.1088/0031-8949/75/6/010

    CrossRef Google Scholar

    [4]
    Demiray H 2016 Phys. Plasmas 23 032109 doi: 10.1063/1.4943279

    CrossRef Google Scholar

    [5]
    Devanandhan S, Singh S V, Lakhina G S and Bharuthram R 2012 Phys. Plasmas 19 082314 doi: 10.1063/1.4743015

    CrossRef Google Scholar

    [6]
    Williams G, Verheest F, Hellberg M A, Anowar M G M and Kourakis I 2014 Phys. Plasmas 21 092103 doi: 10.1063/1.4894115

    CrossRef Google Scholar

    [7]
    Abdelwahed H G 2015 Phys. Plasmas 22 092102 doi: 10.1063/1.4929793

    CrossRef Google Scholar

    [8]
    Bernstein I B, Greene J M and Kruskal M D 1957 Phys. Rev. 108 546 doi: 10.1103/PhysRev.108.546

    CrossRef Google Scholar

    [9]
    Lu Q M, Wang D Y and Wang S 2005 J. Geophys. Res. 110 A03223 doi: 10.1029/2004JA010739

    CrossRef Google Scholar

    [10]
    Lu Q M, Lembege B, Tao J B and Wang S 2008 J. Geophys. Res. 113 A11219 doi: 10.1029/2008JA013693

    CrossRef Google Scholar

    [11]
    Wu M Y, Wu H, Lu Q M and Xue B S 2010 Chin. Phys. Lett. 27 095201 doi: 10.1088/0256-307X/27/9/095201

    CrossRef Google Scholar

    [12]
    El-Taibany W F and Moslem W M 2005 Phys. Plasmas 12 032307 doi: 10.1063/1.1857528

    CrossRef Google Scholar

    [13]
    Lu, Q M, Wang S and Xiankang D 2005 Phys. Plasmas 12 072903 doi: 10.1063/1.1951367

    CrossRef Google Scholar

    [14]
    Sabry R and Omran M A 2013 Astrophys. Space Sci. 344 455 doi: 10.1007/s10509-013-1356-y

    CrossRef Google Scholar

    [15]
    Moslem W M, Abdelsalam U M, Sabry R, El-Shamy E F and El-Labany S K 2010 J. Plasma Phys. 76 453 doi: 10.1017/S0022377809990808

    CrossRef Google Scholar

    [16]
    Mamun A A and Shukla P K 2009 Phys. Rev. E 80 037401 doi: 10.1103/PhysRevE.80.037401

    CrossRef Google Scholar

    [17]
    Borhanian J and Shahmansouri M 2013 Phys. Plasmas 20 013707 doi: 10.1063/1.4789620

    CrossRef Google Scholar

    [18]
    Mannan A and Mamun A A 2012 Astrophys. Space Sci. 340 109 doi: 10.1007/s10509-012-1046-1

    CrossRef Google Scholar

    [19]
    Pakzad H R 2011 Phys. Plasmas 18 082105 doi: 10.1063/1.3622207

    CrossRef Google Scholar

    [20]
    Shuchy S T, Mannan A and Mamun A A 2012 JETP Lett. 95 282 doi: 10.1134/S0021364012060094

    CrossRef Google Scholar

    [21]
    Borhanian J and Shahmansouri M 2012 Astrophys. Space Sci. 342 401 doi: 10.1007/s10509-012-1137-z

    CrossRef Google Scholar

    [22]
    Schamel H 1973 J. Plasma Phys. 9 377 doi: 10.1017/S002237780000756X

    CrossRef Google Scholar

    [23]
    Mamun A A and Shukla P K 2002 J. Geophys. Res. 107 1135 doi: 10.1029/2001JA009131

    CrossRef Google Scholar

    [24]
    Elwakil S A, El-Shewy E K and Zahran, M A 2004 Chaos Solitons Fractals 22 13 doi: 10.1016/j.chaos.2004.01.017

    CrossRef Google Scholar

    [25]
    Sahu B and Roychoudhury R 2004 J. Plasma Phys. 11 1947 doi: 10.1063/1.1695558

    CrossRef Google Scholar

    [26]
    Frederico G S F and Torres D F M 2008 Nonlinear Dyn. 53 215 doi: 10.1007/s11071-007-9309-z

    CrossRef Google Scholar

    [27]
    Agrawal O P 2008 J. Math. Anal. Appl. 337 1 doi: 10.1016/j.jmaa.2007.03.105

    CrossRef Google Scholar

    [28]
    Wang G W and Xu T Z 2014 Nonlinear Dyn. 76 571 doi: 10.1007/s11071-013-1150-y

    CrossRef Google Scholar

    [29]
    El-Wakil S A, Abulwafa E M, El-Shewy E K and Mahmoud A A 2012 Plasma Phys. 78 641 doi: 10.1017/S0022377812000530

    CrossRef Google Scholar

    [30]
    El-Wakil S A, Abulwafa E M, El-Shewy E K and Mahmoud A A 2012 Adv. Space Res. 49 1721 doi: 10.1016/j.asr.2012.02.018

    CrossRef Google Scholar

    [31]
    El-Shewy E K, Mahmoud A A, Tawfik A M, Abulwafa E M and Elgarayhi A 2014 Chin. Phys. B 23 070505 doi: 10.1088/1674-1056/23/7/070505

    CrossRef Google Scholar

    [32]
    El-Wakil S A, Abulwafa E M, El-Shewy E K and Mahmoud A A 2011 Chin. Phys. B 20 040508 doi: 10.1088/1674-1056/20/4/040508

    CrossRef Google Scholar

    [33]
    Nazari-Golshan A, Nourazar S S, Parvin P and Ghafoori-Fard H 2014 Astrophys. Space Sci. 349 205 doi: 10.1007/s10509-013-1610-3

    CrossRef Google Scholar

    [34]
    Guo, L M and Zhang Z 2015 Phys. Plasmas 22 052306 doi: 10.1063/1.4919264

    CrossRef Google Scholar

    [35]
    Demiray H and Bay?nd?r C 2015 Phys. Plasmas 22 092105 doi: 10.1063/1.4929863

    CrossRef Google Scholar

    [36]
    Agrawal O P 2007 J. Phys. A 40 6287 doi: 10.1088/1751-8113/40/24/003

    CrossRef Google Scholar

    [37]
    Momian S and Odibat Z 2007 Chaos Solitons Fractals 31 5 1248 doi: 10.1016/j.chaos.2005.09.045

    CrossRef Google Scholar

    [38]
    Ray S S and Bera R K 2005 Appl. Math. Comput. 167 561 doi: 10.12691/ajna-3-3-1

    CrossRef Google Scholar

    [39]
    Miller S K and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equation New York: John Wiley & Sons

    Google Scholar

    [40]
    El-Shewy E K 2005 Chaos Solitons Fractals 26 1073 doi: 10.1016/j.chaos.2005.01.060

    CrossRef Google Scholar

  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]CAO De-Zhong, XU Bao-Long, ZHANG Su-Heng, WANG Kai-Ge. Color Ghost Imaging with Pseudo-White-Thermal Light [J]. Chin. Phys. Lett., 2015, 32(11): 114208. doi: 10.1088/0256-307X/32/11/114208
    [3]WANG Lai, ZHAO Wei, HAO Zhi-Biao, LUO Yi. Photocatalysis of InGaN Nanodots Responsive to Visible Light [J]. Chin. Phys. Lett., 2011, 28(5): 057301. doi: 10.1088/0256-307X/28/5/057301
    [4]GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions [J]. Chin. Phys. Lett., 2010, 27(6): 061201. doi: 10.1088/0256-307X/27/6/061201
    [5]JIANG Lai-Dong, DAI Qiao-Feng, FENG Tian-Hua, LIU Jin, WU Li-Jun, LAN Sheng, A. V. Gopal, V. A. Trofimov. In-Situ Characterization of Three-Dimensional Optical Matters by Light Diffraction [J]. Chin. Phys. Lett., 2009, 26(7): 074201. doi: 10.1088/0256-307X/26/7/074201
    [6]SHEN Xia, BAI Yan-Feng, QIN Tao, HAN Shen-Sheng. Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light [J]. Chin. Phys. Lett., 2008, 25(11): 3968-3971.
    [7]YANG Jian, QIU Tai, SHEN Chun-Ying. New BCN Fibres for Strong Ultraviolet and Visible Light Luminescence [J]. Chin. Phys. Lett., 2006, 23(9): 2573-2575.
    [8]TANG Lin, GU Chun, CHEN Bo, WANG Pei, MING Hai, XIE Jian-Ping. Analysis of Near-Field Diffraction Pattern of a Metallic Probe Tip with the Boundary Diffraction Wave Method [J]. Chin. Phys. Lett., 2005, 22(9): 2443-2446.
    [9]PU Ji-Xiong, CAI Chao, HU Xian-Dai, LIU Xiao-Yun. Spectral Anomalies in the Fraunhofer Diffraction Pattern [J]. Chin. Phys. Lett., 2005, 22(9): 2259-2261.
    [10]SHI Wanquan, HOU Qingrun, LIU Xuejun, LIU Shixiang, FU Zhengqing, LU Liwu, LI Yuanjing. Light Induced Rapid Thermal Diffusion of Boron Atom in Silicon [J]. Chin. Phys. Lett., 1992, 9(9): 475-478.

Catalog

    Article views (3) PDF downloads (579) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return