Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source

  • Measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side-channel attacks and guarantee the information-theoretical security even with uncharacterized single photon detectors. MDI-QKD has been demonstrated in both laboratories and field-tests by using attenuated lasers combined with the decoy-state technique. However, it is a critical assumption that the sources used by legitimate participants are trusted in MDI-QKD. Hence, it is possible that a potential security risk exists. Here we propose a new scheme of polarization-encoding-based MDI-QKD with a single untrusted source, by which the complexity of the synchronization system can be reduced and the success rate of the Bell-state measurement can be improved. Meanwhile, the decoy-state method is employed to avoid the security issues introduced by a non-ideal single photon source. We also derive a security analysis of the proposed system. In addition, it seems to be a promising candidate for the implementation for QKD network in the near future.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return