Efficient Solution to Electromagnetic Scattering Problems of Bodies of Revolution by Compressive Sensing

  • Under the theory structure of compressive sensing (CS), an underdetermined equation is deduced for describing the discrete solution of the electromagnetic integral equation of body of revolution (BOR), which will result in a small-scale impedance matrix. In the new linear equation system, the small-scale impedance matrix can be regarded as the measurement matrix in CS, while the excited vector is the measurement of unknown currents. Instead of solving dense full rank matrix equations by the iterative method, with suitable sparse representation, for unknown currents on the surface of BOR, the entire current can be accurately obtained by reconstructed algorithms in CS for small-scale undetermined equations. Numerical results show that the proposed method can greatly improve the computational efficiency and can decrease memory consumed.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return