Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores
-
Abstract
Based on the generalized uncertainty principle with maximum momentum and minimal length, we discuss the equation of state of ideal ultra-relativistic Fermi gases at zero temperature. Maximum momentum avoids the problem that the Fermi degenerate pressure blows up since the increase of the Fermi energy is not limited. Applying this equation of state to the Tolman–Oppenheimer–Volkoff (TOV) equation, the quantum gravitational effects on the cores of compact stars are discussed. In the center of compact stars, we obtain the singularity-free solution of the metric component, g_\rm tt\sim -(1+0.2185\times \tilde r^2). By numerically solving the TOV equation, we find that quantum gravity plays an important role in the region r\sim 10^4\alpha_0(\Delta x)_\min. Current observed masses of neutron stars indicate that the dimensionless parameter \alpha_0 cannot exceed 10^19.
Article Text
-
-
-
About This Article
Cite this article:
Xiu-Ming Zhang, Wei Fu. Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores[J]. Chin. Phys. Lett., 2016, 33(1): 010401. DOI: 10.1088/0256-307X/33/1/010401
Xiu-Ming Zhang, Wei Fu. Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores[J]. Chin. Phys. Lett., 2016, 33(1): 010401. DOI: 10.1088/0256-307X/33/1/010401
|
Xiu-Ming Zhang, Wei Fu. Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores[J]. Chin. Phys. Lett., 2016, 33(1): 010401. DOI: 10.1088/0256-307X/33/1/010401
Xiu-Ming Zhang, Wei Fu. Maximum Momentum, Minimal Length and Quantum Gravity Effects of Compact Star Cores[J]. Chin. Phys. Lett., 2016, 33(1): 010401. DOI: 10.1088/0256-307X/33/1/010401
|