Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method
-
Abstract
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems.
Article Text
-
-
-
About This Article
Cite this article:
XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method[J]. Chin. Phys. Lett., 2015, 32(9): 097701. DOI: 10.1088/0256-307X/32/9/097701
XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method[J]. Chin. Phys. Lett., 2015, 32(9): 097701. DOI: 10.1088/0256-307X/32/9/097701
|
XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method[J]. Chin. Phys. Lett., 2015, 32(9): 097701. DOI: 10.1088/0256-307X/32/9/097701
XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method[J]. Chin. Phys. Lett., 2015, 32(9): 097701. DOI: 10.1088/0256-307X/32/9/097701
|