Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells
-
Abstract
Polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and 6,6-phenyl-C61-butyric acid methyl ester (PCBM) are fabricated by using 1,8-diiodooctane (DIO) as a solvent additive to control the doping density of the PSCs. It is shown that the processing of DIO does not change the doping density of the P3HT phase, while it causes a dramatic reduction of the doping density of the PCBM phase, which decreases the doping density of the whole blend layer from 3.7×1016 cm?3 to 1.2×1016 cm?3. The reduction of the doping density in the PCBM phase originates from the increasing crystallinity of PCBM with DIO addition, and it leads to a decreasing doping density in the blend film and improves the short circuit current of the PSCs.
Article Text
-
-
-
About This Article
Cite this article:
LIU Qian, HE Zhi-Qun, LIANG Chun-Jun, ZHAO Yong, XIAO Wei-Kang, LI Dan. Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 056801. DOI: 10.1088/0256-307X/32/5/056801
LIU Qian, HE Zhi-Qun, LIANG Chun-Jun, ZHAO Yong, XIAO Wei-Kang, LI Dan. Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 056801. DOI: 10.1088/0256-307X/32/5/056801
|
LIU Qian, HE Zhi-Qun, LIANG Chun-Jun, ZHAO Yong, XIAO Wei-Kang, LI Dan. Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 056801. DOI: 10.1088/0256-307X/32/5/056801
LIU Qian, HE Zhi-Qun, LIANG Chun-Jun, ZHAO Yong, XIAO Wei-Kang, LI Dan. Effect of Crystallinity of Fullerene Derivatives on Doping Density in the Organic Bulk Heterojunction Layer in Polymer Solar Cells[J]. Chin. Phys. Lett., 2015, 32(5): 056801. DOI: 10.1088/0256-307X/32/5/056801
|