Generation of Broadband Spectrum from a Simple Nonlinear-Polarization-Evolution Mode-Locked Yb-Doped Fiber Oscillator
-
Abstract
We demonstrate a nonlinear polarization evolution mode-locked Yb-doped fiber oscillator with the broadband spectrum output operating in a dispersion-managed regime. Pumped by a 976 nm single-mode laser diode, stable mode-locked ultrashort pulses are emitted with an average power of 198 mW at a repetition rate of 124 MHz, corresponding to a pulse energy of 1.6 nJ. The output spectrum spans from 950 nm to 1150 nm so that the transform-limited pulse duration is as short as 23 fs. Due to the imperfect dispersion compensation, we compress the pulses to 32 fs in this experiment. -
References
[1] Spielmann C, Curley P F, Brabec T and Krausz F 1994 IEEE J. Quantum Electron. 30 1100 doi: 10.1109/3.291379 [2] Zhang Z X, Senel C, Hamid R and Ilday F ? 2013 Opt. Lett. 38 956 [3] Chong A, Liu H, Nie B, Bale B G, Wabnitz S, Renninger W H, Dantus M and Wise F W 2012 Opt. Express 20 14213 [4] Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F and Jrgensen C G 2004 Opt. Lett. 29 250 [5] Wise F W, Chong A and Renninger W H 2008 Laser Photon. Rev. 2 58 [6] Schibli T R, Minoshima K, Hong F L, Inaba H, Onae A, Matsumoto H, Hartl I and Fermann M E 2004 Opt. Lett. 29 2467 [7] Zhou X Y, Yoshitomi D, Kobayashi Y and Torizuka K 2008 Opt. Express 16 7055 [8] Li P, Wang G Z, Li C, Wang A M, Zhang Z G, Meng F, Cao S Y and Fang Z J 2012 Opt. Express 20 16017 [9] Lim J K, Chen H W, Chang G Q and K ?rtner F X 2013 Opt. Express 21 4531 [10] Wang G Z, Meng F, Li C, Jiang T X, Wang A M, Fang Z J and Zhang Z G 2014 Opt. Lett. 39 2534 [11] Xi P, Andegeko Y, Weisel L R, Lozovoy V V and Dantus M 2008 Opt. Commun. 281 1841 [12] Kurita T, Yoshida H, Kawashima T and Miyanaga N 2012 Opt. Lett. 37 3972 [13] Lan Y, Song Y J, Hu M L, Liu B W, Chai L and Wang C Y 2013 Opt. Lett. 38 1292 [14] Ilday F ?, Buckley J R, Clark W G and Wise F W 2004 Phys. Rev. Lett. 92 213902 [15] Deng Y X, Tu C H and Lu F Y 2009 Acta Phys. Sin. 58 3173 (in Chinese) [16] Zhang L, Han H N, Zhao Y Y, Hou L, Yu Z J and Wei Z Y 2014 Appl. Phys. B 117 1183 -
Related Articles
[1] DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201 [2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201 [3] LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205 [4] WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314. [5] LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364. [6] MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315. [7] YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627. [8] YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67. [9] ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723. [10] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.