Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space
-
Abstract
We study the two-dimensional harmonic oscillator in commutative and noncommutative space within the framework of minimal length quantum mechanics for spin-1/2 particles. The energy spectra and the eigenfunction are obtained in both cases. Special cases are also deduced.
Article Text
-
-
-
About This Article
Cite this article:
A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(3): 030201. DOI: 10.1088/0256-307X/32/3/030201
A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(3): 030201. DOI: 10.1088/0256-307X/32/3/030201
|
A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(3): 030201. DOI: 10.1088/0256-307X/32/3/030201
A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(3): 030201. DOI: 10.1088/0256-307X/32/3/030201
|