Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping
-
Abstract
A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(001) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposition by using a two-step growth process. Threading dislocations arising from lattice mismatch are trapped by laterally confining sidewalls, and antiphase domains boundaries are completely restricted by V-groove trenches with Si {111} facets. Material quality is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction. Low temperature photoluminescence (PL) measurement is used to analyze the thermal strain relaxation in GaAs layers. This approach shows great promise for the realization of high mobility devices or optoelectronic integrated circuits on Si substrates. -
References
[1] Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M, Lochtefeld A and Shellenbarger Z 2007 Appl. Phys. Lett. 91 021114 doi: 10.1063/1.2756165 [2] Ghosh R N, Griffing B and Ballantyne J M 1986 Appl. Phys. Lett. 48 370 [3] Wang G, Leys M, Loo R, Richard O et al 2010 Appl. Phys. Lett. 97 121913 [4] Yonezu H 2002 Semicond. Sci. Technol. 17 762 [5] Vdovin V I, Mil'vidskii M G and Yugova T G 1993 J. Cryst. Growth 132 477 [6] Fang S F, Adomi K, Iyer S, Morkoc H, Zabel H, Choi C and Otsuka N 1990 J. Appl. Phys. 68 R31 [7] Yamaguchi M, Yamamoto A, Tachikawa M, Itoh Y and Sugo M 1988 Appl. Phys. Lett. 53 2293 [8] Hayafuji N, Miyashita M, Nishimura T, Kadoiwa K, Kumabe H and Murotani T 1990 Jpn. J. Appl. Phys. 29 2371 [9] Bai J, Park J S, Cheng Z, Curtin M, Adekore B, Carroll M and Lochtefeld A 2007 Appl. Phys. Lett. 90 101902 [10] Hsu C, Chen Y and Su Y 2011 Appl. Phys. Lett. 99 133115 [11] Wang G, Leys R, Nguyen N D, Loo R et al 2010 J. Electrochem. Soc. 157 H1023 [12] Shikida M, Sato K and Tokoro K 2000 Uchikawa Sens. Actuators A: Phys. 80 179 [13] Bordel D, Guimard D, Rajesh M, Nishioka M, Augendre E, Clavelier L and Arakawa Y 2010 Appl. Phys. Lett. 96 043101 [14] Xu Q, Hsu J W P, Carlin J A, Sieg R M, Boeckl J J and Ringel S A 1999 Appl. Phys. Lett. 75 2111 [15] Allongue P, Costakieling V and Gerischer 1993 J. Electrochem. Soc. 140 1009 [16] Lin J L, Petrovykh D Y, Viernow J, Men F K, Seo D J and Himpsel F J 1998 J. Appl. Phys. 84 255 [17] Krost A, Heinrichsdorff F, Bimberg D and Cerva H 1994 Appl. Phys. Lett. 64 769 [18] Dynna M and Marty A 1998 Acta Mater. 46 1087 [19] A Scaccabarozzi, S Bietti, A Fedorov, H Kanel, L Miglio, S Sanguinetti 2014 J. Cryst. Growth 401 559 [20] Sze S M and Kwok K Ng 2007 Physics of Semiconductor Devices ch 1 [21] Freundlich A, Kamada H, Neu G and Gil B 1989 Phys. Rev. B 40 1652 -
Related Articles
[1] GAO Bo, LIU Hong-Xia, WANG Shu-Long. AlGaN/GaN Ultraviolet Detector with Dual Band Response [J]. Chin. Phys. Lett., 2011, 28(5): 057802. doi: 10.1088/0256-307X/28/5/057802 [2] CAO Dong-Sheng, LU Hai, CHEN Dun-Jun, HAN Ping, ZHANG Rong, ZHENG You-Dou. A 1100+V AlGaN/GaN-Based Planar Schottky Barrier Diode without Edge Termination [J]. Chin. Phys. Lett., 2011, 28(1): 017303. doi: 10.1088/0256-307X/28/1/017303 [3] ZHAO De-Gang, JIANG De-Sheng, LIU Zong-Shun, ZHU Jian-Jun, WANG Hui, ZHANG Shu-Ming, YANG Hui. An Anomalous Gain Mechanism in GaN Schottky Barrier Ultraviolet Photodetectors [J]. Chin. Phys. Lett., 2009, 26(5): 058501. doi: 10.1088/0256-307X/26/5/058501 [4] FENG Chun, WANG Xiao-Liang, YANG Cui-Bai, XIAO Hong-Ling, ZHANG Ming-Lan, JIANG Li-Juan, TANG Jian, HU Guo-Xin, WANG Jun-Xi, WANG Zhan-Guo. Effect of CO on Characteristics of AlGaN/GaN Schottky Diode [J]. Chin. Phys. Lett., 2008, 25(8): 3025-3027. [5] WANG Xin-Hua, WANG Xiao-Liang, FENG Chun, XIAO Hong-Ling, YANG Cui-Bai, WANG Jun-Xi, WANG Bao-Zhu, RAN Jun-Xue, WANG Cui-Mei. Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes [J]. Chin. Phys. Lett., 2008, 25(1): 266-269. [6] SANG Li-Wen, QIN Zhi-Xin, CEN Long-Bin, SHEN Bo, ZHANG Guo-Yi, LI Shu-Ping, CHEN Hang-Yang, LIU Da-Yi, KANG Jun-Yong, CHENG Cai-Jing, ZHAO Hong-Yan, LU Zheng-Xiong, DING Jia-Xin, ZHAO Lan, SI Jun-Jie, SUN Wei-Guo. AlGaN-Based Solar-Blind Schottky Photodetectors Fabricated on AlN/Sapphire Template [J]. Chin. Phys. Lett., 2008, 25(1): 258-261. [7] SANG Li-Wen, QIN Zhi-Xin, CEN Long-Bin, CHEN Zhi-Zhong, YANG Zhi-Jian, SHEN Bo, ZHANG Guo-Yi. Barrier Enhancement Effect of Postannealing in Oxygen Ambient on Ni/AlGaN Schottky Contacts [J]. Chin. Phys. Lett., 2007, 24(10): 2938-2941. [8] CHEN Chen, JIANG Wen-Hai, REN Chun-Jiang, LI Zhong-Hui, JIAO Gang, DONG Xun, CHEN Tang-Sheng. Ultraviolet Phototransistors on AlGaN/GaN Heterostructures [J]. Chin. Phys. Lett., 2007, 24(9): 2707-2709. [9] MA Zhi-Yong, WANG Xiao-Liang, HU Guo-Xin, RAN Jun-Xue, XIAO Hong-Ling, LUO Wei-Jun, TANG Jian, LI Jian-Ping, LI Jin-Min. Growth and Characterization of AlGaN/AlN/GaN HEMT Structures with a Compositionally Step-Graded AlGaN Barrier Layer [J]. Chin. Phys. Lett., 2007, 24(6): 1705-1708. [10] ZHU Shi-Yang, LI Ming-Fu. High Performance P-Channel Schottky Barrier MOSFETs with Self-Aligned PtSi Source/Drain on Thin Film SOI Substrate [J]. Chin. Phys. Lett., 2005, 22(8): 2020-2022.