Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping
-
Abstract
A high quality of GaAs crystal growth in nanoscale V-shape trenches on Si(001) substrates is achieved by using the aspect-ratio trapping method. GaAs thin films are deposited via metal-organic chemical vapor deposition by using a two-step growth process. Threading dislocations arising from lattice mismatch are trapped by laterally confining sidewalls, and antiphase domains boundaries are completely restricted by V-groove trenches with Si 111 facets. Material quality is confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction. Low temperature photoluminescence (PL) measurement is used to analyze the thermal strain relaxation in GaAs layers. This approach shows great promise for the realization of high mobility devices or optoelectronic integrated circuits on Si substrates.
Article Text
-
-
-
About This Article
Cite this article:
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting, LI Meng-Ke, MI Jun-Ping, BIAN Jing, WANG Wei, PAN Jiao-Qing. Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping[J]. Chin. Phys. Lett., 2015, 32(2): 028101. DOI: 10.1088/0256-307X/32/2/028101
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting, LI Meng-Ke, MI Jun-Ping, BIAN Jing, WANG Wei, PAN Jiao-Qing. Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping[J]. Chin. Phys. Lett., 2015, 32(2): 028101. DOI: 10.1088/0256-307X/32/2/028101
|
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting, LI Meng-Ke, MI Jun-Ping, BIAN Jing, WANG Wei, PAN Jiao-Qing. Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping[J]. Chin. Phys. Lett., 2015, 32(2): 028101. DOI: 10.1088/0256-307X/32/2/028101
LI Shi-Yan, ZHOU Xu-Liang, KONG Xiang-Ting, LI Meng-Ke, MI Jun-Ping, BIAN Jing, WANG Wei, PAN Jiao-Qing. Selective Area Growth of GaAs in V-Grooved Trenches on Si(001) Substrates by Aspect-Ratio Trapping[J]. Chin. Phys. Lett., 2015, 32(2): 028101. DOI: 10.1088/0256-307X/32/2/028101
|