Protein Based Localized Surface Plasmon Resonance Gas Sensing
-
Abstract
We apply the localized surface plasmon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrome c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range of 15–100 ppb. Monolayer formation of GNPs on glass surface functionalized with 3-aminopropyltrimethoxysilane (APTMS) is performed for fabricating a chip-based format of the optical transducer. By chemical introduction of short-chain thiol derivatives on cyt c protein shell via its lysine residues, a very fast self-assembled monolayer (SAM) of cyt c is formed on the GNPs. Significant shifts in the LSPR peak (ΔλLSPR) are observed by reacting H2S with cyt c. Results show a linear relationship between ΔλLSPR and H2S concentration. Furthermore, shifts in the LSPR peak are reversible and the peak positions return to their pre-exposure values once the H2S is removed. The experimental results strongly indicate that the protein based LSPR chip can be successfully used as a simple, fast, sensitive and quantitative sensor for H2S detection.
Article Text
-
-
-
About This Article
Cite this article:
Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(1): 018701. DOI: 10.1088/0256-307X/32/1/018701
Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(1): 018701. DOI: 10.1088/0256-307X/32/1/018701
|
Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(1): 018701. DOI: 10.1088/0256-307X/32/1/018701
Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(1): 018701. DOI: 10.1088/0256-307X/32/1/018701
|