A Class of Two-Component Adler–Bobenko–Suris Lattice Equations

  • Revised Date: August 22, 2014
  • Published Date: August 31, 2014
  • We study a class of two-component forms of the famous list of the Adler–Bobenko–Suris lattice equations. The obtained two-component lattice equations are still consistent around the cube and they admit solutions with 'jumping properties' between two levels.
  • Article Text

  • [1] Nijhoff F W and Walker A J 2001 Glasgow Math. J. 43A 109
    [2] Nijhoff F W 2002 Phys. Lett. A 297 49
    [3] Adler V E, Bobenko A I and Suris Yu B 2003 Commun. Math. Phys. 233 513
    [4] Tongas A and Nijhoff F W 2005 Glasgow Math. J. 47 205
    [5] Hietarinta J and Zhang D J 2009 J. Phys. A: Math. Theor. 42 404006
    [6] Hietarinta J and Zhang D J 2010 J. Math. Phys. 51 033505
    [7] Hietarinta J and Zhang D J 2011 SIGMA 7 061
    [8] Nong L J, Zhang D J, Shi Y and Zhang W Y 2013 Chin. Phys. Lett. 30 040201
    [9] Hietarinta J 2011 J. Phys. A: Math. Theor. 44 165204
    [10] Zhang D J, Zhao S L and Nijhoff F W 2012 Stud. Appl. Math. 129 220
    [11] Nijhoff F W 1999 Discrete Integrable Geometry and Physics ed Bobenko A I, Seiler R (Oxford: Oxford University Press) chap 8 p 209
    [12] Bridgman T, Hereman W, Quispel G R W and van der Kamp P 2013 Found. Comput. Math. 13 517
    [13] Wu H, Zheng H C and Zhang D J 2014 Commun. Appl. Math. Comput. (accepted)
    [14] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 40 891
    [15] Oevel W, Zhang H and Fuchssteiner B 1989 Prog. Theor. Phys. 81 294
    [16] Khanizadeh F, Mikhailov A V and Wang J P 2013 Theor. Math. Phys. 177 1606
    [17] Zhang D J, Cheng J W and Sun Y Y 2013 J. Phys. A: Math. Theor. 46 265202
    [18] Cheng J W and Zhang D J 2013 Front. Math. Chin. 8 1001
    [19] Adler V E, Bobenko A I and Suris Yu B 2012 Int. Math. Res. Not. 2012 1822
  • Related Articles

    [1]MA Chun-Rui, GUI Yuan-Xing, WANG Fu-Jun. Quintessence Contribution to a Schwarzschild Black Hole Entropy [J]. Chin. Phys. Lett., 2007, 24(11): 3286-3289.
    [2]LI Xiang, ZHAO Zheng. Brick Wall Model and the Spectrum of a Schwarzschild Black Hole [J]. Chin. Phys. Lett., 2006, 23(8): 2016-2018.
    [3]LIU Cheng-Zhou. Holographic Entropy Bound of a Nonstationary Black Hole [J]. Chin. Phys. Lett., 2006, 23(5): 1092-1095.
    [4]FANG Heng-Zhong, HU Ya-Peng, ZHAO Zheng. Hawking Radiation from the Horowitz--Strominger Black Hole [J]. Chin. Phys. Lett., 2005, 22(7): 1611-1613.
    [5]CHEN Song-Bai, JING Ji-Liang. Asymptotic Quasinormal Modes of the Garfinkle--Horowitz--Strominger Dilaton Black Hole [J]. Chin. Phys. Lett., 2004, 21(11): 2109-2112.
    [6]JING Ji-Liang, CHEN Song-Bai. Entropy of the Schwarzschild Black Hole in the Painlevé and the Lemaitre Coordinates [J]. Chin. Phys. Lett., 2004, 21(3): 432-434.
    [7]LIU Wen-Biao. Reissner-Nordstrom Black Hole Entropy Inside and Outside the Brick Wall [J]. Chin. Phys. Lett., 2003, 20(3): 440-443.
    [8]LI Zhong-Heng, MI Li-Qin, ZHAO Zheng. Brick Walls for Nonstationary Black Holes [J]. Chin. Phys. Lett., 2002, 19(12): 1755-1758.
    [9]GAO Chang-Jun, SHEN You-Gen. Fermions Entropy of Vaidya-Bonner Black Hole [J]. Chin. Phys. Lett., 2001, 18(9): 1167-1169.
    [10]LIU Wen-Biao, ZHAO Zheng. An Improved Thin Film Brick-Wall Model of Black Hole Entropy [J]. Chin. Phys. Lett., 2001, 18(2): 310-312.

Catalog

    Article views (1) PDF downloads (394) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return