-
Abstract
We study a class of two-component forms of the famous list of the Adler–Bobenko–Suris lattice equations. The obtained two-component lattice equations are still consistent around the cube and they admit solutions with 'jumping properties' between two levels. -
References
[1] Nijhoff F W and Walker A J 2001 Glasgow Math. J. 43A 109 [2] Nijhoff F W 2002 Phys. Lett. A 297 49 [3] Adler V E, Bobenko A I and Suris Yu B 2003 Commun. Math. Phys. 233 513 [4] Tongas A and Nijhoff F W 2005 Glasgow Math. J. 47 205 [5] Hietarinta J and Zhang D J 2009 J. Phys. A: Math. Theor. 42 404006 [6] Hietarinta J and Zhang D J 2010 J. Math. Phys. 51 033505 [7] Hietarinta J and Zhang D J 2011 SIGMA 7 061 [8] Nong L J, Zhang D J, Shi Y and Zhang W Y 2013 Chin. Phys. Lett. 30 040201 [9] Hietarinta J 2011 J. Phys. A: Math. Theor. 44 165204 [10] Zhang D J, Zhao S L and Nijhoff F W 2012 Stud. Appl. Math. 129 220 [11] Nijhoff F W 1999 Discrete Integrable Geometry and Physics ed Bobenko A I, Seiler R (Oxford: Oxford University Press) chap 8 p 209 [12] Bridgman T, Hereman W, Quispel G R W and van der Kamp P 2013 Found. Comput. Math. 13 517 [13] Wu H, Zheng H C and Zhang D J 2014 Commun. Appl. Math. Comput. (accepted) [14] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 40 891 [15] Oevel W, Zhang H and Fuchssteiner B 1989 Prog. Theor. Phys. 81 294 [16] Khanizadeh F, Mikhailov A V and Wang J P 2013 Theor. Math. Phys. 177 1606 [17] Zhang D J, Cheng J W and Sun Y Y 2013 J. Phys. A: Math. Theor. 46 265202 [18] Cheng J W and Zhang D J 2013 Front. Math. Chin. 8 1001 [19] Adler V E, Bobenko A I and Suris Yu B 2012 Int. Math. Res. Not. 2012 1822 -
Related Articles
[1] MA Chun-Rui, GUI Yuan-Xing, WANG Fu-Jun. Quintessence Contribution to a Schwarzschild Black Hole Entropy [J]. Chin. Phys. Lett., 2007, 24(11): 3286-3289. [2] LI Xiang, ZHAO Zheng. Brick Wall Model and the Spectrum of a Schwarzschild Black Hole [J]. Chin. Phys. Lett., 2006, 23(8): 2016-2018. [3] LIU Cheng-Zhou. Holographic Entropy Bound of a Nonstationary Black Hole [J]. Chin. Phys. Lett., 2006, 23(5): 1092-1095. [4] FANG Heng-Zhong, HU Ya-Peng, ZHAO Zheng. Hawking Radiation from the Horowitz--Strominger Black Hole [J]. Chin. Phys. Lett., 2005, 22(7): 1611-1613. [5] CHEN Song-Bai, JING Ji-Liang. Asymptotic Quasinormal Modes of the Garfinkle--Horowitz--Strominger Dilaton Black Hole [J]. Chin. Phys. Lett., 2004, 21(11): 2109-2112. [6] JING Ji-Liang, CHEN Song-Bai. Entropy of the Schwarzschild Black Hole in the Painlevé and the Lemaitre Coordinates [J]. Chin. Phys. Lett., 2004, 21(3): 432-434. [7] LIU Wen-Biao. Reissner-Nordstrom Black Hole Entropy Inside and Outside the Brick Wall [J]. Chin. Phys. Lett., 2003, 20(3): 440-443. [8] LI Zhong-Heng, MI Li-Qin, ZHAO Zheng. Brick Walls for Nonstationary Black Holes [J]. Chin. Phys. Lett., 2002, 19(12): 1755-1758. [9] GAO Chang-Jun, SHEN You-Gen. Fermions Entropy of Vaidya-Bonner Black Hole [J]. Chin. Phys. Lett., 2001, 18(9): 1167-1169. [10] LIU Wen-Biao, ZHAO Zheng. An Improved Thin Film Brick-Wall Model of Black Hole Entropy [J]. Chin. Phys. Lett., 2001, 18(2): 310-312.