Sr3Bi(PO4)3:Eu2+ Luminescence, Concentration Quenching and Crystallographic Sites

  • A blue emitting phosphor Sr3Bi(PO4)3:Eu2+ is synthesized by a high-temperature solid state method, and its luminescent property is investigated. Sr3Bi(PO4)3:Eu2+ can create blue emission under the 332 radiation excitation, and the prominent luminescence in blue (423 nm) due to the 4f5d1→4f7 transition of the Eu2+ ion. The crystallographic sites of the Eu2+ ion in Sr3Bi(PO4)3 are analyzed, and the 420 and 440 nm emission peaks of the Eu2+ ion are assigned to the nine-coordination and eight-coordination, respectively. The emission intensity of Sr3Bi(PO4)3:Eu2+ is influenced by the Eu2+ doping content, and the concentration quenching effect is observed. The quenching mechanism is the dipole-dipole interaction, and the critical distance of energy transfer is calculated by the concentration quenching method to be approximately 1.72 nm.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return