Effect of the O2/Ar Pressure Ratio on the Microstructure and Surface Morphology of Epi-MgO/IBAD-MgO Templates for GdBa2Cu3O7 Coated Conductors

  • High-quality epi-MgO buffer layers under different O2/Ar pressure ratios are fabricated by rf magnetron sputtering on textured IBAD-MgO templates. Under the total deposition pressure remaining constant (14 Pa), the effect of changing the ratio of O2/Ar pressure from 1:4 to 3:2 on the microstructure and surface morphology of epi-MgO films is studied. The microstructure and morphology of epi-MgO are fully characterized by x-ray diffraction, atom force microscope and scanning electron microscope. The best texture quality of epi-MgO with an out-plane Δω value of 1.8° and an in-plane Δ? value of 5.22° are obtained under the ratio of O2/Ar pressure 3:2. Further, the surface morphology indicates that the surface of epi-MgO is smooth with rms surface roughness about 4.7 nm at O2/Ar pressure ratio 3:2. After that, GdBa2Cu3O7 (GBCO) layers are deposited on the CeO2 cap layer buffered epi-MgO/IBAD-MgO templates to assess the efficiency of such a buffer layer stack. The critical current density of GBCO films (thickness of 200 nm) is higher than 3 MA/cm2, indicating that epi-MgO/IBAD-MgO is promising for depositing superconducting layers with a higher critical current density.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return