Electron Beam Lithographic Pixelated Micropolarizer Array for Real-Time Phase Measurement

  • Revised Date: October 27, 2014
  • Published Date: October 31, 2014
  • Pixelated micropolarizer arrays (PMAs) have recently been used as key components to achieve real-time phase measurement. PMA fabrication by electron beam lithography and inductively coupled plasma-reactive ion etching is proposed in this work. A 320×240 aluminum PMA with 7.4 μm pitch is successfully fabricated by the proposed technique. The period of the grating is 140 nm, and the polarization directions of each of the 2×2 units are 0°, 45°, 90°, and 135°. The scanning electron microscopy and optical microscopy results show that the PMA has a good surface characteristic and polarization performances. When the PMA is applied to phase-shifting interferometry, four fringe patterns of different polarization directions are obtained from only one single frame image, and then the object wave phase is calculated in real time.
  • Article Text

  • [1] Bruning J H et al 1974 Appl. Opt. 13 2693 doi: 10.1364/AO.13.002693
    [2] Kato J et al 1993 Appl. Opt. 32 77
    [3] Zhang Z et al 2013 Opt. Eng. 52 103109
    [4] Haasteren A J P and Frankena H J 1994 Appl. Opt. 33 4137
    [5] Kujawinska M and Robinson D W 1988 Appl. Opt. 27 312
    [6] Qian K et al 1999 Opt. Lasers Eng. 31 289
    [7] Sasada M et al 2004 International Commission for Optics (Chiba) pp 187 357
    [8] Millerd J et al 2004 Proc. SPIE 5531 304
    [9] Awatsuji Y et al 2004 Appl. Phys. Lett. 85 1069
    [10] Brock N J et al 2011 Proc. SPIE 8160 81600W
    [11] Tahara T et al 2012 Opt. Lett. 37 4002
    [12] Tahara T et al 2010 Biomed. Opt. Express 1 610
    [13] Creath K and Goldstein G 2012 Biomed. Opt. Express 3 2866
    [14] Gruev V et al 2007 Opt. Express 15 4994
    [15] Zhao X et al 2011 Opt. Express 19 5565
    [16] Nordin G P et al 1999 J. Opt. Soc. Am. A 16 1168
    [17] Gruev V 2011 Opt. Express 19 24361
    [18] Ahn S H et al 2007 J. Vac. Sci. Technol. B 25 2388
    [19] Chu J K et al IEEE Photon. Technol. Lett. 26 469
    [20] Chu J K et al 2013 J. Micro-Nanolith MEM 12 033005
    [21] Zhao Y R et al 2014 Exp. Mech. 54 45
    [22] Xie H M et al 2000 Opt. Laser Technol. 32 361
    [23] Kishinoto S and Egashira M 1993 Opt. Eng. 32 522
    [24] Gao S et al 2013 Proc. SPIE 8873 88730L
    [25] Qian K 2007 Opt. Lasers Eng. 45 304
  • Related Articles

    [1]GAN Sheng-Xin, U. Lombardo, U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach [J]. Chin. Phys. Lett., 2012, 29(4): 042102. doi: 10.1088/0256-307X/29/4/042102
    [2]LI Zeng-Hua, ZUO Wei, GUO Wen-Jun. Single-Particle Properties of Isospin Asymmetric Nuclear Matter [J]. Chin. Phys. Lett., 2012, 29(1): 012102. doi: 10.1088/0256-307X/29/1/012102
    [3]WEN Jing, JIANG Hong-Bing, YU Jing, YANG Hong, GONG Qi-Huang. Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal [J]. Chin. Phys. Lett., 2011, 28(6): 064207. doi: 10.1088/0256-307X/28/6/064207
    [4]LU Xiao-Hua, ZHANG Ying-Xun, LI Zhu-Xia, ZHAO Zhi-Xiang. Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas [J]. Chin. Phys. Lett., 2008, 25(11): 3932-3935.
    [5]TIAN Yuan, MA Zhong-Yu. A Separable Pairing Force in Nuclear Matter [J]. Chin. Phys. Lett., 2006, 23(12): 3226-3229.
    [6]ZHANG Xu-Ming, QIAN Wei-Liang, SU Ru-Keng. Liquid-Gas Phase Transition for Asymmetric Nuclear Matter in the Zimanyi-Moszkowski Model [J]. Chin. Phys. Lett., 2004, 21(7): 1240-1242.
    [7]LI Zeng-Hua, ZUO Wei, LU Guang-Cheng. Phase Transition of Hot Nuclear Matter [J]. Chin. Phys. Lett., 2004, 21(1): 29-32.
    [8]XU Chong-Ming, WU Xue-Jun. Extending the First-Order Post-Newtonian Scheme in Multiple Systems to the Second-Order Contributions to Light Propagation [J]. Chin. Phys. Lett., 2003, 20(2): 195-198.
    [9]LIU Ling, MA Zhong-Yu. A New Decomposition Approach of Dirac Brueckner Hartree-FockG Matrix for Asymmetric Nuclear Matter [J]. Chin. Phys. Lett., 2002, 19(2): 190-193.
    [10]WANG Nengping, YANG Shande. Compression Modulus of Finite Nuclear Matter at Zero Temperature [J]. Chin. Phys. Lett., 1995, 12(6): 338-341.

Catalog

    Article views (0) PDF downloads (686) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return